Phase transition and symmetry breaking in the minority game

被引:136
作者
Challet, D [1 ]
Marsili, M
机构
[1] Univ Fribourg, Inst Phys Theor, CH-1700 Fribourg, Switzerland
[2] Ist Nazl Fis Mat, Unita Trieste, SISSA, I-34014 Trieste, Italy
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 06期
关键词
D O I
10.1103/PhysRevE.60.R6271
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the minority game, a model of interacting heterogeneous agents, can be described as a spin system and displays a phase transition between a symmetric phase and a symmetry broken phase where the game's outcome is predictable. As a result a "spontaneous magnetization" arises in the spin formalism. [S1063-651X(99)50912-4].
引用
收藏
页码:R6271 / R6274
页数:4
相关论文
共 15 条
[1]  
Anderson P.W., 1988, EC EVOLVING COMPLEX
[2]  
ANDERSON PW, 1998, ECONOPHYSICS EMERGIN
[3]  
ARTHUR WB, 1994, AM ECON REV, V84, P406
[4]   Irrelevance of memory in the minority game [J].
Cavagna, A .
PHYSICAL REVIEW E, 1999, 59 (04) :R3783-R3786
[5]   On the minority game: Analytical and numerical studies [J].
Challet, D ;
Zhang, YC .
PHYSICA A, 1998, 256 (3-4) :514-532
[6]   Emergence of cooperation and organization in an evolutionary game [J].
Challet, D ;
Zhang, YC .
PHYSICA A, 1997, 246 (3-4) :407-418
[7]  
CHALLET D, UNPUB
[8]  
Fudenberg D., 1991, GAME THEORY
[9]   TRAGEDY OF COMMONS [J].
HARDIN, G .
SCIENCE, 1968, 162 (3859) :1243-+
[10]   Volatility and agent adaptability in a self-organizing market [J].
Johnson, NF ;
Jarvis, S ;
Jonson, R ;
Cheung, P ;
Kwong, YR ;
Hui, PM .
PHYSICA A, 1998, 258 (1-2) :230-236