Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor

被引:893
作者
Appelhoff, RJ
Tian, YM
Raval, RR
Turley, H
Harris, AL
Pugh, CW
Ratcliffe, PJ
Gleadle, JM
机构
[1] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Clin Lab Sci, Tumour Pathol Grp,Canc Res UK CRUK, Oxford OX3 9DU, England
[2] John Radcliffe Hosp, Inst Mol Med, CRUK, Mol Oncol Grp, Oxford OX3 9DU, England
关键词
D O I
10.1074/jbc.M406026200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hypoxia-inducible factor (HIF) is a transcriptional regulator that plays a key role in many aspects of oxygen homeostasis. The heterodimeric HIF complex is regulated by proteolysis of its alpha-subunits, following oxygen-dependent hydroxylation of specific prolyl residues. Although three HIF prolyl hydroxylases, PHD1, PHD2, and PHD3, have been identified that have the potential to catalyze this reaction, the contribution of each isoform to the physiological regulation of HIF remains uncertain. Here we show using suppression by small interference RNA that each of the three PHD isoforms contributes in a non-redundant manner to the regulation of both HIF-1alpha and HIF-2alpha subunits and that the contribution of each PHD under particular culture conditions is strongly dependent on the abundance of the enzyme. Thus in different cell types, isoform-specific patterns of PHD induction by hypoxia and estrogen alter both the relative abundance of the PHDs and their relative contribution to the regulation of HIF. In addition, the PHDs manifest specificity for different prolyl hydroxylation sites within each HIF-alpha subunit, and a degree of selectively between HIF-1alpha and HIF-2alpha isoforms, indicating that differential PHD inhibition has the potential to selectively alter the characteristics of HIF activation.
引用
收藏
页码:38458 / 38465
页数:8
相关论文
共 40 条
[1]   HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1α in normoxia [J].
Berra, E ;
Benizri, E ;
Ginouvès, A ;
Volmat, V ;
Roux, D ;
Pouysségur, J .
EMBO JOURNAL, 2003, 22 (16) :4082-4090
[2]   A conserved family of prolyl-4-hydroxylases that modify HIF [J].
Bruick, RK ;
McKnight, SL .
SCIENCE, 2001, 294 (5545) :1337-1340
[3]   Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor [J].
Bruick, RK .
GENES & DEVELOPMENT, 2003, 17 (21) :2614-2623
[4]   Differential regulation of HIF-1α prolyl-4-hydroxylase genes by hypoxia in human cardiovascular cells [J].
Cioffi, CL ;
Liu, XQ ;
Kosinski, PA ;
Garay, M ;
Bowen, BR .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 303 (03) :947-953
[5]   Hypoxia up-regulates prolyl hydroxylase activity - A feedback mechansim that limits HIF-1 responses during reoxygenation [J].
D'Angelo, G ;
Duplan, E ;
Boyer, N ;
Vigne, P ;
Frelin, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (40) :38183-38187
[6]   Mapping, characterization, and expression analysis of the SM-20 human homologue, C1orf12, and identification of a novel related gene, SCAND2 [J].
Dupuy, D ;
Aubert, I ;
Dupérat, VG ;
Petit, J ;
Taine, L ;
Stef, M ;
Bloch, B ;
Arveiler, B .
GENOMICS, 2000, 69 (03) :348-354
[7]   Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells [J].
Elbashir, SM ;
Harborth, J ;
Lendeckel, W ;
Yalcin, A ;
Weber, K ;
Tuschl, T .
NATURE, 2001, 411 (6836) :494-498
[8]   Analysis of gene function in somatic mammalian cells using small interfering RNAs [J].
Elbashir, SM ;
Harborth, J ;
Weber, K ;
Tuschl, T .
METHODS, 2002, 26 (02) :199-213
[9]   C-elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation [J].
Epstein, ACR ;
Gleadle, JM ;
McNeill, LA ;
Hewitson, KS ;
O'Rourke, J ;
Mole, DR ;
Mukherji, M ;
Metzen, E ;
Wilson, MI ;
Dhanda, A ;
Tian, YM ;
Masson, N ;
Hamilton, DL ;
Jaakkola, P ;
Barstead, R ;
Hodgkin, J ;
Maxwell, PH ;
Pugh, CW ;
Schofield, CJ ;
Ratcliffe, PJ .
CELL, 2001, 107 (01) :43-54
[10]   Falkor, a novel cell growth regulator isolated by a functional genetic screen [J].
Erez, N ;
Milyavsky, M ;
Goldfinger, N ;
Peles, E ;
Gudkov, AV ;
Rotter, V .
ONCOGENE, 2002, 21 (44) :6713-6721