Generalized partially linear single-index models

被引:718
作者
Carroll, RJ
Fan, JQ
Gijbels, I
Wand, MP
机构
[1] UNIV N CAROLINA, DEPT STAT, CHAPEL HILL, NC 27599 USA
[2] UNIV CATHOLIQUE LOUVAIN, INST STAT, B-1348 LOUVAIN, BELGIUM
[3] UNIV NEW S WALES, AUSTRALIAN GRAD SCH MANAGEMENT, SYDNEY, NSW 2052, AUSTRALIA
关键词
asymptotic theory; generalized linear models; kernel regression; local estimation; local polynomial regression; nonparametric regression; quasi-likelihood;
D O I
10.2307/2965697
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The typical generalized linear model for a regression of a response Y on predictors (X, Z) has conditional mean function based on a linear combination of (X, Z). We generalize these models to have a nonparametric component, replacing the linear combination alpha(0)(T)X + beta(0)(T)Z by eta(0)(alpha(0)(T)X) + beta(0)(T)Z, where eta(0)(.) is an unknown function: We call these generalized partially lineal single-index models (GPLSIM). The models include the ''single-index'' models, which have beta(0) = 0. Using local linear methods, we propose estimates of the unknown parameters (alpha(0), beta(0)) and the unknown function eta(0)(.) and obtain their asymptotic distributions. Examples illustrate the models and the proposed estimation methodology.
引用
收藏
页码:477 / 489
页数:13
相关论文
共 28 条
[1]  
Bickel P. J., 1993, EFFICIENT ADAPTIVE I
[2]  
BONNEU M, 1995, UNPUB SEMIPARAMETRIC
[3]  
Carroll R. J., 1995, 9506 CATH U LOUV I S
[4]   CONVERGENCE-RATES FOR PARAMETRIC COMPONENTS IN A PARTLY LINEAR-MODEL [J].
CHEN, H .
ANNALS OF STATISTICS, 1988, 16 (01) :136-146
[5]  
CUZICK J, 1992, J ROY STAT SOC B MET, V54, P831
[6]  
Fan J., 1994, Journal of computational and graphical statistics, V3, P35, DOI 10.2307/1390794
[7]   LOCAL POLYNOMIAL KERNEL REGRESSION FOR GENERALIZED LINEAR-MODELS AND QUASI-LIKELIHOOD FUNCTIONS [J].
FAN, JQ ;
HECKMAN, NE ;
WAND, MP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (429) :141-150
[8]   OPTIMAL SMOOTHING IN SINGLE-INDEX MODELS [J].
HARDLE, W ;
HALL, P ;
ICHIMURA, H .
ANNALS OF STATISTICS, 1993, 21 (01) :157-178
[9]  
Hardle W. K., 1992, Computational Statistics, V7, P97
[10]  
Hastie T., 1990, Generalized additive model