Differential temporal evolution of post-training changes in regional brain glucose metabolism induced by repeated spatial discrimination training in mice: Visualization of the memory consolidation process?

被引:35
作者
Bontempi, B [1 ]
Jaffard, R [1 ]
Destrade, C [1 ]
机构
[1] UNIV BORDEAUX 1,URA CNRS 339,LAB NEUROSCI COMPORTEMENTALES & COGNIT,F-33405 TALENCE,FRANCE
关键词
spatial reference memory; radial maze; C-14]glucose; hippocampus; cortex; brain imaging;
D O I
10.1111/j.1460-9568.1996.tb01198.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The present study analyses the effects of the stage of learning on the spatial patterns and time-course of [C-14]glucose uptake in BALB/c mice brain regions produced by spatial discrimination training in an eight-arm radial maze, Our particular approach was designed to follow, during the post-training period, the level of functional activity in individual brain areas which may underlie the memory consolidation process. Regional mapping of relative [C-14]glucose uptake was assessed at three post-training time intervals (5 min, 1 and 3 h) after either the first (Day 1), the fourth (Day 4) or the last (Day 9) daily training session of the discrimination task and compared with sham-conditioned animals placed in the same experimental environment, The results indicated that numerous subcortical and cortical brain regions exhibit metabolic alterations following the acquisition of the spatial discrimination task, These alterations, which were specifically related to learning since they did not appear in sham-conditioned animals, were functions both of the post-training interval studied and of the degree of mastery of the task, On Day 1, a progressive, time-dependent and sequential increase in labelling was found from subcortical (5 min post-training) to cortical regions (3 h post-training), On Day 4, a peak of cortical metabolic activation was identified at 1 h post-training, In contrast, on Day 9, maximum labelling was found 5 min post-training in all subcortical and cortical regions followed by a general monotonic decline at 1 and 3 h post-training. These findings, which show widely distributed changes of metabolic activity in the brain, are consistent with the hypothesis that learning involves distributed neural networks. The sequential activation from subcortical to cortical regions seems to indicate a general mechanism whose function would ultimately be to store cortical memory representations. The acquisition-dependent shifts in the patterns of post-training metabolic labelling observed as a function of task mastery may be taken to represent a visualization of the spatio-temporal evolution of the networks of brain structures actively engaged in the memory consolidation process, In particular, the present data suggest that the duration of post-acquisition memory processing is a function of the quantity of new information which has to be dealt with by the central nervous system.
引用
收藏
页码:2348 / 2360
页数:13
相关论文
共 75 条
[1]   Evidences of reminiscence in the rat in maze learning [J].
Anderson, AC .
JOURNAL OF COMPARATIVE PSYCHOLOGY, 1940, 30 (02) :399-412
[2]  
[Anonymous], 1967, BRANCUSI STUDY SCULP
[3]  
BERMAN RF, 1991, LEARNING MEMORY BIOL, P409
[4]  
BONTEMPI B, 1991, CR ACAD SCI III-VIE, V313, P195
[5]  
Bontempi B., 1993, Society for Neuroscience Abstracts, V19, P361
[6]  
BONTEMPI B, 1990, SOC NEUR ABSTR, V16, P1247
[7]   EFFECTS OF KIND OF PRIOR TRAINING AND INTERSESSION INTERVAL UPON SUBSEQUENT AVOIDANCE LEARNING [J].
BRUSH, FR ;
MYER, JS ;
PALMER, ME .
JOURNAL OF COMPARATIVE AND PHYSIOLOGICAL PSYCHOLOGY, 1963, 56 (03) :539-&
[8]  
Bures J., 1990, CONCEPT NEUROSCI, V1, P69
[9]   INHIBITORY AVOIDANCE TRAINING INDUCES RAPID AND SELECTIVE CHANGES IN (3)[H]AMPA RECEPTOR-BINDING IN THE RAT HIPPOCAMPAL-FORMATION [J].
CAMMAROTA, M ;
IZQUIERDO, I ;
WOLFMAN, C ;
DESTEIN, ML ;
BERNABEU, R ;
JERUSALINSKY, D ;
MEDINA, JH .
NEUROBIOLOGY OF LEARNING AND MEMORY, 1995, 64 (03) :257-264
[10]   TIME-LOCKED MULTIREGIONAL RETROACTIVATION - A SYSTEMS-LEVEL PROPOSAL FOR THE NEURAL SUBSTRATES OF RECALL AND RECOGNITION [J].
DAMASIO, AR .
COGNITION, 1989, 33 (1-2) :25-62