共 30 条
Siderocalin Outwits the Coordination Chemistry of Vibriobactin, a Siderophore of Vibrio cholerae
被引:33
作者:
Allred, Benjamin E.
[1
]
Correnti, Colin
[2
]
Clifton, Matthew C.
[2
]
Strong, Roland K.
[2
]
Raymond, Kenneth N.
[1
]
机构:
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[2] Fred Hutchinson Canc Res Ctr, Div Basic Sci, Seattle, WA 98109 USA
基金:
美国国家卫生研究院;
关键词:
IRON TRANSPORT COMPOUNDS;
IMMUNE-RESPONSE;
ENTEROBACTIN;
FLUVIALIS;
PATHOGEN;
CARBOXYMYCOBACTINS;
IDENTIFICATION;
RECOGNITION;
VULNIBACTIN;
LIPOCALIN-2;
D O I:
10.1021/cb4002552
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
The human protein siderocalin (Scn) inhibits bacterial iron acquisition by binding catechol siderophores. Several Several pathogenic bacteria respond by making stealth siderophores that are not recognized by Scn. Fluvibactin and vibriobactin, respectively of Vibrio fluvialis and Vibrio cholerae, include an oxazoline adjacent to a catechol. This chelating unit binds iron either in a catecholate or a phenolate-oxazoline coordination mode. The latter has been suggested to make vibriobactin a stealth siderophore without directly identifying the coordination mode in relation to Scn binding. We use San. binding assays with the two siderophores and two oxazoline-substituted analogs and the crystal structure of Fe-fluvibactin:Scn to show that the oxazoline does not prevent Scn binding; hence, vibriobactin is not a stealth siderophore. We show that the phenolate-oxazoline coordination mode is present at physiological pH and is not bound by Scn. However, Scn binding shifts the coordination to the catecholate mode and thereby inactivates this siderophore.
引用
收藏
页码:1882 / 1887
页数:6
相关论文