Elementary proofs of identities for Schur functions and plane partitions

被引:9
作者
Bressoud, DM [1 ]
机构
[1] Macalester Coll, Dept Math & Comp Sci, St Paul, MN 55105 USA
关键词
Schur functions; plane partitions;
D O I
10.1023/A:1009882007093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use elementary methods to prove formulas that represent sums of restricted classes of Schur functions as ratios of determinants. This includes recent formulas for sums over bounded partitions with even parts and sums over bounded partitions whose conjugates have only even parts. All of these formulas imply plane partition generating functions.
引用
收藏
页码:69 / 80
页数:12
相关论文
共 17 条
[1]  
Andrews G. E., 1978, ADV MATH SUPPL STUDI, V1, P131
[2]   PLANE PARTITIONS .2. EQUIVALENCE OF BENDER-KNUTH AND MACMAHON CONJECTURES [J].
ANDREWS, GE .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 72 (02) :283-291
[3]  
Bender E.A., 1972, J COMBIN THEORY A, V13, P40, DOI 10.1016/0097-3165(72)90007-6
[4]   Elementary proof of MacMahon's conjecture [J].
Bressoud, DM .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 7 (03) :253-257
[5]  
BRESSOUD DM, 2000, PROOFS CONFIRMATIONS
[6]  
DESAINTECATHERINE M, 1986, LECT NOTES MATH, V1234, P58
[7]  
DESARMENIEN J, 1989, CR ACAD SCI I-MATH, V309, P269
[8]  
DESARMENIEN J, 1987, PUBL IRMA, P39
[9]  
Gordon B., 1971, J. Combin. Theory Ser. B, V11, P157, DOI [10.1016/0095-8956(71)90026-8, DOI 10.1016/0095-8956(71)90026-8]
[10]   Applications of minor-summation formula II. Pfaffians and Schur polynomials [J].
Ishikawa, M ;
Wakayama, M .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 88 (01) :136-157