Nitric oxide inhibition of transforming growth factor-beta and collagen synthesis in mesangial cells

被引:109
作者
Craven, PA
Studer, RK
Felder, J
Phillips, S
DeRubertis, FR
机构
[1] UNIV PITTSBURGH,DEPT MED,PITTSBURGH,PA
[2] UNIV PITTSBURGH,DEPT MOL GENET & BIOCHEM,PITTSBURGH,PA
关键词
D O I
10.2337/diabetes.46.4.671
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Culture of mesangial cells (MCs) in 5.6 vs. 30.0 mmol/l glucose for 3 weeks induced a sustained increase in protein kinase C (PKC) activity, transforming growth factor (TGF)-beta(1) mRNA, bioactive TGF-beta, and collagen synthesis. Nitric oxide (NO), generated exogenously by the NO donor S-nitroso-N-acetyl, D,L-penicillamine (SNAP) or endogenously after the exposure of MC to interleukin-1 beta (IL-1 beta), suppressed bioactive TGF-beta in MCs cultured in 5.6 or 30.0 mmol/l glucose and suppressed or abolished increases in TGF-beta(1), mRNA and collagen synthesis induced by high concentrations of glucose or phorbol 12,13-dibutyrate without altering values obtained with normal glucose concentrations. SNAP had a transient suppressive effect on PKC activity, which may explain at least in part some of the actions of SNAP. The selective inhibitor of PKC, bisindolylmaleimide (GFX), mimicked NO action. The ability of SNAP and IL-1 beta to suppress TGF-beta and collagen synthesis was not mediated by cGMP, since the cGMP analog, 8-Br-PET-cGMP, did not mimic NO action and an antagonist of cGMP-dependent protein kinase, Rp-8-pCPT-cGMPs, did not prevent the inhibitory actions of SNAP. N-omega-L-arginine methyl ester (NMMA) increased TGF-beta in glomerular capillary endothelial cells (GCECs) and stimulated collagen synthesis by MC in a co-culture with GCECs. Captopril inhibited TGF-beta and collagen synthesis and increased cGMP in co-cultures of GCECs and MCs. These effects of captopril were abolished by NMMA, implying mediation by NO. Thus, endogenous NO produced by GCECs may modulate TGF-beta production by both GCECs and MCs and act to suppress matrix protein synthesis by MCs.
引用
收藏
页码:671 / 681
页数:11
相关论文
共 61 条
[1]   HIGH GLUCOSE AUGMENTS ANGIOTENSIN-II ACTION BY INHIBITING NO SYNTHESIS IN IN-VITRO MICROPERFUSED RABBIT AFFERENT ARTERIOLES [J].
ARIMA, S ;
ITO, S ;
OMATA, K ;
TAKEUCHI, K ;
ABE, K .
KIDNEY INTERNATIONAL, 1995, 48 (03) :683-689
[2]   HIGH GLUCOSE INCREASES DIACYLGLYCEROL MASS AND ACTIVATES PROTEIN-KINASE-C IN MESANGIAL CELL-CULTURES [J].
AYO, SH ;
RADNIK, R ;
GARONI, JA ;
TROYER, DA ;
KREISBERG, JI .
AMERICAN JOURNAL OF PHYSIOLOGY, 1991, 261 (04) :F571-F577
[3]   ROLE OF EDRF (NITRIC-OXIDE) IN DIABETIC RENAL HYPERFILTRATION [J].
BANK, N ;
AYNEDJIAN, HS .
KIDNEY INTERNATIONAL, 1993, 43 (06) :1306-1312
[4]   CHRONIC BLOCKADE OF NITRIC-OXIDE SYNTHESIS IN THE RAT PRODUCES SYSTEMIC HYPERTENSION AND GLOMERULAR DAMAGE [J].
BAYLIS, C ;
MITRUKA, B ;
DENG, A .
JOURNAL OF CLINICAL INVESTIGATION, 1992, 90 (01) :278-281
[5]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[6]   AMINOGUANIDINE, A NOVEL INHIBITOR OF NITRIC-OXIDE FORMATION, PREVENTS DIABETIC VASCULAR DYSFUNCTION [J].
CORBETT, JA ;
TILTON, RG ;
CHANG, K ;
HASAN, KS ;
IDO, Y ;
WANG, JL ;
SWEETLAND, MA ;
LANCASTER, JR ;
WILLIAMSON, JR ;
MCDANIEL, ML .
DIABETES, 1992, 41 (04) :552-556
[7]   IMPAIRED NITRIC-OXIDE RELEASE BY GLOMERULI FROM DIABETIC RATS [J].
CRAVEN, PA ;
STUDER, RK ;
DERUBERTIS, FR .
METABOLISM-CLINICAL AND EXPERIMENTAL, 1995, 44 (06) :695-698
[8]   IMPAIRED NITRIC OXIDE-DEPENDENT CYCLIC GUANOSINE-MONOPHOSPHATE GENERATION IN GLOMERULI FROM DIABETIC RATS - EVIDENCE FOR PROTEIN-KINASE C-MEDIATED SUPPRESSION OF THE CHOLINERGIC RESPONSE [J].
CRAVEN, PA ;
STUDER, RK ;
DERUBERTIS, FR .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (01) :311-320
[9]   PROTEIN KINASE-C IS ACTIVATED IN GLOMERULI FROM STREPTOZOTOCIN DIABETIC RATS - POSSIBLE MEDIATION BY GLUCOSE [J].
CRAVEN, PA ;
DERUBERTIS, FR .
JOURNAL OF CLINICAL INVESTIGATION, 1989, 83 (05) :1667-1675
[10]   INCREASE IN DIACYLGLYCEROL MASS IN ISOLATED GLOMERULI BY GLUCOSE FROM DENOVO SYNTHESIS OF GLYCEROLIPIDS [J].
CRAVEN, PA ;
DAVIDSON, CM ;
DERUBERTIS, FR .
DIABETES, 1990, 39 (06) :667-674