Finding predictive gene groups from microarray data

被引:88
作者
Dettling, M [1 ]
Bühlmann, P [1 ]
机构
[1] Swiss Fed Inst Technol, Seminar Stat, CH-8092 Zurich, Switzerland
关键词
gene expression; penalized logistic regression; dimension reduction; sample classification;
D O I
10.1016/j.jmva.2004.02.012
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Microarray experiments generate large datasets with expression values for thousands of genes, but not more than a few dozens of samples. A challenging task with these data is to reveal groups of genes which act together and whose collective expression is strongly associated with an outcome variable of interest. To find these groups, we suggest the use of supervised algorithms: these are procedures which use external information about the response variable for grouping the genes. We present Pelora, an algorithm based on penalized logistic regression analysis, that combines gene selection, gene grouping and sample classification in a supervised, simultaneous way. With an empirical study on six different microarray datasets, we show that Pelora identifies gene groups whose expression centroids have very good predictive potential and yield results that can keep up with state-of-the-art classification methods based on single genes. Thus, our gene groups can be beneficial in medical diagnostics and prognostics, but they may also provide more biological insights into gene function and regulation. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:106 / 131
页数:26
相关论文
共 22 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]  
Allwein E. L., 2000, J MACHINE LEARNING R, V1, P113, DOI DOI 10.1162/15324430152733133
[3]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[4]  
Bickel Peter J, 1993, Efficient and adaptive estimation for semiparametric models, V4
[5]   Boosting for tumor classification with gene expression data [J].
Dettling, M ;
Bühlmann, P .
BIOINFORMATICS, 2003, 19 (09) :1061-1069
[6]  
Dettling M, 2002, GENOME BIOL, V3
[7]   Comparison of discrimination methods for the classification of tumors using gene expression data [J].
Dudoit, S ;
Fridlyand, J ;
Speed, TP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :77-87
[8]  
Dudoit S, 2002, GENOME BIOL, V3
[9]   Classification of microarray data with penalized logistic regression [J].
Eilers, PHC ;
Boer, JM ;
van Ommen, GJ ;
van Houwelingen, HC .
MICROARRAYS: OPTICAL TECHNOLOGIES AND INFORMATICS, 2001, 4266 :187-198
[10]   Support vector machine classification and validation of cancer tissue samples using microarray expression data [J].
Furey, TS ;
Cristianini, N ;
Duffy, N ;
Bednarski, DW ;
Schummer, M ;
Haussler, D .
BIOINFORMATICS, 2000, 16 (10) :906-914