Comparative Evaluation of Anomaly Detection Techniques for Sequence Data

被引:94
作者
Chandola, Varun [1 ]
Mithal, Varun [2 ]
Kumar, Vipin [1 ]
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
[2] IIT Kanpur, Kanpur, Uttar Pradesh, India
来源
ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS | 2008年
关键词
D O I
10.1109/ICDM.2008.151
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a comparative evaluation of a large number of anomaly detection techniques on a variety of publicly available as well as artificially generated data sets. Mangy of these are existing techniques while some are slight variants and/or adaptations of traditional anomaly detection techniques to sequence data.
引用
收藏
页码:743 / +
页数:2
相关论文
共 18 条
[1]  
Bateman A, 2002, NUCLEIC ACIDS RES, V30, P276, DOI [10.1093/nar/gkr1065, 10.1093/nar/gkp985, 10.1093/nar/gkh121]
[2]  
BUDALAKOTI S, 2006, TM2006214553 NASA AM
[3]  
CHANDOLA V, 2008, ACM COMPUTI IN PRESS
[4]  
CHANDOLA V, 2008, 08021 U MINN
[5]  
Cohen W. W., 1995, P 12 INT C MACH LEAR, P115, DOI DOI 10.1016/B978-1-55860-377-6.50023-2
[6]  
Forrest S., 1996, SEC PRIV 1996 P 1996, P120, DOI [DOI 10.1109/SECPRI.1996.502675, 10.1109/SECPRI.1996.502675]
[7]  
GAO B, 2002, ICMLC, P381
[8]  
HOFMEYR S, 1998, J COMPUTER SECURITY, V6
[9]  
Jain AK., 1988, Algorithms for clustering data
[10]  
LEE W, 1997, AAAI WORKSH AI METH