cDNA cloning and expression of a C-terminus motor kinesin-like protein KLP-17, involved in chromosomal movement in Caenorhabditis elegans

被引:5
作者
Ali, MY
Siddiqui, SS
机构
[1] Univ Illinois, Dept Pharmacol, Chicago, IL 60607 USA
[2] Toyohashi Univ Technol, Dept Ecol Engn, Mol Biol Lab, Toyohashi, Aichi 4418580, Japan
关键词
C; elegans; kinesin-like proteins; embryonic development; retrograde motor; cell division; chromosomal movement;
D O I
10.1006/bbrc.1999.1866
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Members of the kinesin protein family transport intracellular cargo to their correct cellular destination. Previously we have characterized the klp-3 gene from Caenorhabditis elegans, which encodes an ortholog of the retrograde C-terminus kinesin motors, such as Drosophila NCD, and yeast KAR3, involved in the chromosomal movement. Here we report the cloning of a full-length klp-17 cDNA in C. elegans, encoding a C-terminus kinesin of 605 amino residues. KLP-17 sequence defines a novel phylogenetic group, distinct from the NCD/KAR3 family. Interestingly, the klp-17 gene transcript is restricted to the nuclear compartment, as deduced by the RNA in situ hybridization in embryos, The klp-17::gfp-expressing transgenic animals do not display any GFP fluorescence signal, but expression of the extra chromosomal arrays cause production of abnormal males, and embryos with morphological defects and lethality in the progeny. Similarly, the klp-17 RNA interference assay results in embryonic death, arrested embryos, and polyploid cells. Thus, KLP-17 represents a new motor protein that mediates chromosome movement, essential for cell divisions during metazoan development, (C) 2000 Academic Press.
引用
收藏
页码:643 / 650
页数:8
相关论文
共 33 条
[1]  
ADACHI J, 1996, COMPUT SCI MONOGRAPH, V28
[2]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[3]  
BLOOM GS, 1994, PROTEIN PROFILE, V1, P1059
[4]   MEDIATION OF MEIOTIC AND EARLY MITOTIC CHROMOSOME SEGREGATION IN DROSOPHILA BY A PROTEIN RELATED TO KINESIN [J].
ENDOW, SA ;
HENIKOFF, S ;
SOLERNIEDZIELA, L .
NATURE, 1990, 345 (6270) :81-83
[5]   EVOLUTIONARY TREES FROM DNA-SEQUENCES - A MAXIMUM-LIKELIHOOD APPROACH [J].
FELSENSTEIN, J .
JOURNAL OF MOLECULAR EVOLUTION, 1981, 17 (06) :368-376
[6]  
FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x
[7]   A MODULAR SET OF LACZ FUSION VECTORS FOR STUDYING GENE-EXPRESSION IN CAENORHABDITIS-ELEGANS [J].
FIRE, A ;
HARRISON, SW ;
DIXON, D .
GENE, 1990, 93 (02) :189-198
[8]   Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans [J].
Fire, A ;
Xu, SQ ;
Montgomery, MK ;
Kostas, SA ;
Driver, SE ;
Mello, CC .
NATURE, 1998, 391 (6669) :806-811
[9]   Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence [J].
Frishman, D ;
Argos, P .
PROTEIN ENGINEERING, 1996, 9 (02) :133-142
[10]  
Goldstein L S, 1991, Trends Cell Biol, V1, P93, DOI 10.1016/0962-8924(91)90036-9