In order to achieve higher accuracy and faster response in complex process fault diagnosis, an extension sample classification-based extreme learning machine ensemble (ESC-ELME) method is proposed. In the realization process, the extension sample classification is used to divide the fault types. For each fault type, a specific extreme learning machine (ELM) is established and trained independently. Then, all specific ELMs are integrated to determine which fault is happened by the majority voting method. The proposed ESC-ELME method is compared with the traditional ELM and a duty-oriented hierarchical artificial neural network in fault diagnosis of the Tennessee Eastman process. The results demonstrate that the proposed method provides higher diagnosis accuracy and faster response.
引用
收藏
页码:911 / 918
页数:8
相关论文
共 37 条
[1]
[Anonymous], 1971, Generalized Inverses of Matrices and its Applications
机构:
Univ Illinois, Dept Chem Engn, Large Scale Syst Res Lab, Urbana, IL 61801 USAUniv Illinois, Dept Chem Engn, Large Scale Syst Res Lab, Urbana, IL 61801 USA
Chiang, LH
;
Russell, EL
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Chem Engn, Large Scale Syst Res Lab, Urbana, IL 61801 USAUniv Illinois, Dept Chem Engn, Large Scale Syst Res Lab, Urbana, IL 61801 USA
Russell, EL
;
Braatz, RD
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Chem Engn, Large Scale Syst Res Lab, Urbana, IL 61801 USAUniv Illinois, Dept Chem Engn, Large Scale Syst Res Lab, Urbana, IL 61801 USA
机构:
Univ Illinois, Dept Chem Engn, Large Scale Syst Res Lab, Urbana, IL 61801 USAUniv Illinois, Dept Chem Engn, Large Scale Syst Res Lab, Urbana, IL 61801 USA
Chiang, LH
;
Russell, EL
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Chem Engn, Large Scale Syst Res Lab, Urbana, IL 61801 USAUniv Illinois, Dept Chem Engn, Large Scale Syst Res Lab, Urbana, IL 61801 USA
Russell, EL
;
Braatz, RD
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Chem Engn, Large Scale Syst Res Lab, Urbana, IL 61801 USAUniv Illinois, Dept Chem Engn, Large Scale Syst Res Lab, Urbana, IL 61801 USA