Column-averaged CO2 concentrations in the subarctic from GOSAT retrievals and NIES transport model simulations

被引:6
作者
Belikov, D. A. [1 ,2 ,5 ]
Bril, A. [2 ]
Maksyutov, S. [2 ]
Oshchepkov, S. [2 ]
Saeki, T. [2 ]
Takagi, H. [2 ]
Yoshida, Y. [2 ]
Ganshin, A. [3 ]
Zhuravlev, R. [3 ]
Aoki, S. [4 ]
Yokota, T. [2 ]
机构
[1] Natl Inst Polar Res, Div Polar Res, Tokyo, Japan
[2] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki, Japan
[3] Cent Aerol Observ, Dolgoprudnyi, Russia
[4] Tohoku Univ, Grad Sch Sci, Ctr Atmospher & Ocean Studies, Sendai, Miyagi 980, Japan
[5] Tomsk State Univ, Tomsk 634050, Russia
关键词
Carbon cycle; Atmospheric transport; Inverse modeling; GOSAT; GREENHOUSE GASES; RUSSIAN WILDFIRES; TRACER TRANSPORT; ATMOSPHERIC CO2; TECHNICAL NOTE; CARBON; ALGORITHM; FLUXES; ECOSYSTEMS; EXCHANGE;
D O I
10.1016/j.polar.2014.02.002
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The distribution of atmospheric carbon dioxide (CO2) in the subarctic was investigated using the National Institute for Environmental Studies (NIBS) three-dimensional transport model (TM) and retrievals from the Greenhouse gases Observing SATellite (GOSAT). Column-averaged dry air mole fractions of subarctic atmospheric CO2 (XCO2) from the NIES TM for four flux combinations were analyzed. Two flux datasets were optimized using only surface observations and two others were optimized using both surface and GOSAT Level 2 data. Two inverse modeling approaches using GOSAT data were compared. In the basic approach adopted in the GOSAT Level 4 product, the GOSAT observations are aggregated into monthly means over 5 degrees x 5 degrees grids. In the alternative method, the model observation misfit is estimated for each observation separately. The XCO2 values simulated with optimized fluxes were validated against Total Carbon Column Observing Network (TCCON) ground-based high-resolution Fourier Transform Spectrometer (FTS) measurements. Optimized fluxes were applied to study XCO2 seasonal variability over the period 2009-2010 in the Arctic and subarctic regions. The impact on CO2 levels of emissions from enhancement of biospheric respiration induced by the high temperature and strong wildfires occurring in the summer of 2010 was analyzed. Use of GOSAT data has a substantial impact on estimates of the level of CO2 interanual variability. (C) 2014 Elsevier B.V. and NIPR. All rights reserved.
引用
收藏
页码:129 / 145
页数:17
相关论文
共 57 条
[1]   Monthly, global emissions of carbon dioxide from fossil fuel consumption [J].
Andres, R. J. ;
Gregg, J. S. ;
Losey, L. ;
Marland, G. ;
Boden, T. A. .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2011, 63 (03) :309-327
[2]  
[Anonymous], 2009, Annual Fossil-fuel CO2 Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude
[3]   An important fingerprint of wildfires on the European aerosol load [J].
Barnaba, F. ;
Angelini, F. ;
Curci, G. ;
Gobbi, G. P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (20) :10487-10501
[4]  
Basu S., 2013, ATMOS CHEM PHYS DISC, V13, P4535, DOI [10.5194/acpd-13-4535-2013, DOI 10.5194/ACPD-13-4535-2013]
[5]   Mass-conserving tracer transport modelling on a reduced latitude-longitude grid with NIES-TM [J].
Belikov, D. ;
Maksyutov, S. ;
Miyasaka, T. ;
Saeki, T. ;
Zhuravlev, R. ;
Kiryushov, B. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (01) :207-222
[6]   Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection [J].
Belikov, D. A. ;
Maksyutov, S. ;
Krol, M. ;
Fraser, A. ;
Rigby, M. ;
Bian, H. ;
Agusti-Panareda, A. ;
Bergmann, D. ;
Bousquet, P. ;
Cameron-Smith, P. ;
Chipperfield, M. P. ;
Fortems-Cheiney, A. ;
Gloor, E. ;
Haynes, K. ;
Hess, P. ;
Houweling, S. ;
Kawa, S. R. ;
Law, R. M. ;
Loh, Z. ;
Meng, L. ;
Palmer, P. I. ;
Patra, P. K. ;
Prinn, R. G. ;
Saito, R. ;
Wilson, C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (03) :1093-1114
[7]   Simulations of column-averaged CO2 and CH4 using the NIES TM with a hybrid sigma-isentropic (σ-θ) vertical coordinate [J].
Belikov, D. A. ;
Maksyutov, S. ;
Sherlock, V. ;
Aoki, S. ;
Deutscher, N. M. ;
Dohe, S. ;
Griffith, D. ;
Kyro, E. ;
Morino, I. ;
Nakazawa, T. ;
Notholt, J. ;
Rettinger, M. ;
Schneider, M. ;
Sussmann, R. ;
Toon, G. C. ;
Wennberg, P. O. ;
Wunch, D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (04) :1713-1732
[8]   Regional changes in carbon dioxide fluxes of land and oceans since 1980 [J].
Bousquet, P ;
Peylin, P ;
Ciais, P ;
Le Quéré, C ;
Friedlingstein, P ;
Tans, PP .
SCIENCE, 2000, 290 (5495) :1342-1346
[9]  
Brown J, 1997, CIRCUMARCTIC MAP PER
[10]   CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements [J].
Chevallier, F. ;
Ciais, P. ;
Conway, T. J. ;
Aalto, T. ;
Anderson, B. E. ;
Bousquet, P. ;
Brunke, E. G. ;
Ciattaglia, L. ;
Esaki, Y. ;
Froehlich, M. ;
Gomez, A. ;
Gomez-Pelaez, A. J. ;
Haszpra, L. ;
Krummel, P. B. ;
Langenfelds, R. L. ;
Leuenberger, M. ;
Machida, T. ;
Maignan, F. ;
Matsueda, H. ;
Morgui, J. A. ;
Mukai, H. ;
Nakazawa, T. ;
Peylin, P. ;
Ramonet, M. ;
Rivier, L. ;
Sawa, Y. ;
Schmidt, M. ;
Steele, L. P. ;
Vay, S. A. ;
Vermeulen, A. T. ;
Wofsy, S. ;
Worthy, D. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115