The 5′-AMP-activated protein kinase γ3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle

被引:263
作者
Barnes, BR
Marklund, S
Steiler, TL
Walter, M
Hjälm, G
Amarger, V
Mahlapuu, M
Leng, Y
Johansson, C
Galuska, D
Lindgren, K
Åbrink, M
Stapleton, D
Zierath, JR
Andersson, L
机构
[1] Karolinska Inst, Dept Surg Sci, Sect Integrat Physiol, SE-17177 Stockholm, Sweden
[2] Karolinska Inst, Dept Physiol & Pharmacol, SE-17177 Stockholm, Sweden
[3] Swedish Univ Agr Sci, Dept Anim Breeding & Genet, Uppsala Biomed Ctr, SE-75124 Uppsala, Sweden
[4] St Vincents Inst, Fitzroy, Vic 3065, Australia
[5] Swedish Univ Agr Sci, Dept Mol Biosci, SE-75123 Uppsala, Sweden
[6] Arexis AB, Arvid Wallgrens Backe, SE-41346 Gothenburg, Sweden
[7] Uppsala Univ, Uppsala Biomed Ctr, Dept Med Biochem & Microbiol, SE-75124 Uppsala, Sweden
关键词
D O I
10.1074/jbc.M405533200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
5'-AMP-activated protein kinase (AMPK) is a metabolic stress sensor present in all eukaryotes. A dominant missense mutation (R225Q) in pig PRKAG3, encoding the muscle-specific gamma3 isoform, causes a marked increase in glycogen content. To determine the functional role of the AMPK gamma3 isoform, we generated transgenic mice with skeletal muscle-specific expression of wild type or mutant (225Q) mouse gamma3 as well as Prkag3 knockout mice. Glycogen resynthesis after exercise was impaired in AMPK gamma3 knock-out mice and markedly enhanced in transgenic mutant mice. An AMPK activator failed to increase skeletal muscle glucose uptake in AMPK gamma3 knock-out mice, whereas contraction effects were preserved. When placed on a high fat diet, transgenic mutant mice but not knock-out mice were protected against excessive triglyceride accumulation and insulin resistance in skeletal muscle. Transfection experiments reveal the R225Q mutation is associated with higher basal AMPK activity and diminished AMP dependence. Our results validate the muscle-specific AMPK gamma3 isoform as a therapeutic target for prevention and treatment of insulin resistance.
引用
收藏
页码:38441 / 38447
页数:7
相关论文
共 38 条
[1]   Intrasteric control of AMPK via the γ1 subunit AMP allosteric regulatory site [J].
Adams, J ;
Chen, ZP ;
Van Denderen, BJW ;
Morton, CJ ;
Parker, MW ;
Witters, LA ;
Stapleton, D ;
Kemp, BE .
PROTEIN SCIENCE, 2004, 13 (01) :155-165
[2]   Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy [J].
Arad, M ;
Benson, DW ;
Perez-Atayde, AR ;
McKenna, WJ ;
Sparks, EA ;
Kanter, RJ ;
McGarry, K ;
Seidman, JG ;
Seidman, CE .
JOURNAL OF CLINICAL INVESTIGATION, 2002, 109 (03) :357-362
[3]   Effect of AMPK activation on muscle glucose metabolism in conscious rats [J].
Bergeron, R ;
Russell, RR ;
Young, LH ;
Ren, JM ;
Marcucci, M ;
Lee, A ;
Shulman, GI .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1999, 276 (05) :E938-E944
[4]   THE SUBSTRATE AND SEQUENCE SPECIFICITY OF THE AMP-ACTIVATED PROTEIN-KINASE - PHOSPHORYLATION OF GLYCOGEN-SYNTHASE AND PHOSPHORYLASE-KINASE [J].
CARLING, D ;
HARDIE, DG .
BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 1012 (01) :81-86
[5]   Expression of the AMP-activated protein kinase β1 and β2 subunits in skeletal muscle [J].
Chen, ZP ;
Heierhorst, J ;
Mann, RJ ;
Mitchelhill, KI ;
Michell, BJ ;
Witters, LA ;
Lynch, GS ;
Kemp, BE ;
Stapleton, D .
FEBS LETTERS, 1999, 460 (02) :343-348
[6]  
Ciobanu D, 2001, GENETICS, V159, P1151
[7]   Looking at mRNA decay pathways through the window of molecular evolution [J].
Culbertson, MR ;
Leeds, PF .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2003, 13 (02) :207-214
[8]   ENZYME-ACTIVITIES OF GLYCOGEN-METABOLISM AND MITOCHONDRIAL CHARACTERISTICS IN MUSCLES OF RN(-) CARRIER PIGS (SUS-SCROFA-DOMESTICUS) [J].
ESTRADE, M ;
AYOUB, S ;
TALMANT, A ;
MONIN, G .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1994, 108 (03) :295-301
[9]   GLYCOGEN HYPERACCUMULATION IN WHITE MUSCLE-FIBERS OF RN- CARRIER PIGS - A BIOCHEMICAL AND ULTRASTRUCTURAL-STUDY [J].
ESTRADE, M ;
VIGNON, X ;
ROCK, E ;
MONIN, G .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1993, 104 (02) :321-326
[10]   Insulin production by engineered muscle cells [J].
Gros, L ;
Riu, E ;
Montoliu, L ;
Ontiveros, M ;
Lebrigand, L ;
Bosch, F .
HUMAN GENE THERAPY, 1999, 10 (07) :1207-1217