Seasonality extraction by function fitting to time-series of satellite sensor data

被引:1054
作者
Jönsson, P
Eklundh, L
机构
[1] Malmo Univ, Div Math Nat Sci & Language, Malmo, Sweden
[2] Lund Univ, Dept Phys, Lund, Sweden
[3] Lund Univ, Dept Phys Geog & Ecosyst Anal, Lund, Sweden
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2002年 / 40卷 / 08期
基金
美国海洋和大气管理局;
关键词
Advanced Very High Resolution Radiometer; (AVHRR); clouds from AVHRR (CLAVR); data smoothing; function fitting; normalized difference vegetation index (NDVI); phenology; satellite sensor data; seasonality; TIMESAT; time-series;
D O I
10.1109/TGRS.2002.802519
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A new method for extracting seasonality information from time-series of satellite sensor data is presented. The method is based on nonlinear least squares fits of asymmetric Gaussian model functions to the time-series. The smooth model functions are then used for defining key seasonality parameters, such as the number of growing seasons, the beginning and end of the seasons, and the rates of growth and decline. The method is implemented in a computer program TIMESAT and tested on Advanced Very High Resolution Radiometer (AVHRR) normalized difference vegetation index (NDVI) data over Africa. Ancillary cloud data [clouds from AVHRR (CLAVR)] are used as estimates of the uncertainty levels of the data values. Being general in nature, the proposed method can be applied also to new types of satellite-derived time-series data.
引用
收藏
页码:1824 / 1832
页数:9
相关论文
共 43 条
[1]   FOURIER-ANALYSIS OF MULTITEMPORAL AVHRR DATA APPLIED TO A LAND-COVER CLASSIFICATION [J].
ANDRES, L ;
SALAS, WA ;
SKOLE, D .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1994, 15 (05) :1115-1121
[2]   Improving the estimation of noise from NOAA AVHRR NDVI for Africa using geostatistics [J].
Chappell, A ;
Seaquist, JW ;
Eklundh, L .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2001, 22 (06) :1067-1080
[3]   Identification of contaminated pixels in AVHRR composite images for studies of land biosphere [J].
Cihlar, J .
REMOTE SENSING OF ENVIRONMENT, 1996, 56 (03) :149-163
[4]  
DENNIS JE, 1981, ACM T MATH SOFTWARE, V7, P348, DOI 10.1145/355958.355965
[5]   ALGORITHM 573 - NL2SOL - AN ADAPTIVE NON-LINEAR LEAST-SQUARES ALGORITHM [E4] [J].
DENNIS, JE ;
GAY, DM ;
WELSCH, RE .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1981, 7 (03) :369-383
[6]  
Eklundh L, 1998, 27TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, PROCEEDINGS, P262
[7]  
EKLUNDH L, 1995, P MET SAT DAT US C W, P163
[8]   NOISE ESTIMATION IN NOAA AVHRR MAXIMUM-VALUE COMPOSITE NDVI IMAGES [J].
EKLUNDH, LR .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1995, 16 (15) :2955-2962
[9]  
Goward SN., 1987, ADV SPACE RES, V7, P165, DOI [10.1016/0273-1177(87)90308-5, DOI 10.1016/0273-1177(87)90308-5]
[10]   The relative merit of cloud/clear identification in the NOAA/NASA Pathfinder AVHRR land 10-day composites [J].
Gutman, G ;
Ignatov, A .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1996, 17 (16) :3295-3304