Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast

被引:842
作者
Sun, ZW [1 ]
Allis, CD [1 ]
机构
[1] Univ Virginia Hlth Syst, Dept Biochem & Mol Genet, Charlottesville, VA 22908 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature00883
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In eukaryotes, the DNA of the genome is packaged with histone proteins to form nucleosomal filaments, which are, in turn, folded into a series of less well understood chromatin structures(1). Post-translational modifications of histone tail domains modulate chromatin structure and gene expression(2-4). Of these, histone ubiquitination is poorly understood. Here we show that the ubiquitin-conjugating enzyme Rad6 (Ubc2) mediates methylation of histone H3 at lysine 4 (Lys 4) through ubiquitination of H2B at Lys 123 in yeast (Saccharomyces cerevisiae). Moreover, H3 (Lys 4) methylation is abolished in the H2B-K123R mutant, whereas H3-K4R retains H2B (Lys 123) ubiquitination. These data indicate a unidirectional regulatory pathway in which ubiquitination of H2B (Lys 123) is a prerequisite for H3 (Lys 4) methylation. We also show that an H2B-K123R mutation perturbs silencing at the telomere, providing functional links between Rad6-mediated H2B (Lys 123) ubiquitination, Set1-mediated H3 (Lys 4) methylation, and transcriptional silencing. Thus, these data reveal a pathway leading to gene regulation through concerted histone modifications on distinct histone tails. We refer to this as 'trans-tail' regulation of histone modification, a stated prediction of the histone code hypothesis(5,6)
引用
收藏
页码:104 / 108
页数:5
相关论文
共 31 条
[1]   Domains required for dimerization of yeast Rad6 ubiquitin-conjugating enzyme and Rad18 DNA binding protein [J].
Bailly, V ;
Prakash, S ;
Prakash, L .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (08) :4536-4543
[2]   Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae [J].
Briggs, SD ;
Bryk, M ;
Strahl, BD ;
Cheung, WL ;
Davie, JK ;
Dent, SYR ;
Winston, F ;
Allis, CD .
GENES & DEVELOPMENT, 2001, 15 (24) :3286-3295
[3]   Evidence that SET1, a factor required for methylation of histone H3, regulates rDNA silencing in S-cerevisiae by a sir2-independent mechanism [J].
Bryk, M ;
Briggs, SD ;
Strahl, BD ;
Curcio, MJ ;
Allis, CD ;
Winston, F .
CURRENT BIOLOGY, 2002, 12 (02) :165-170
[4]   Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast [J].
Bryk, M ;
Banerjee, M ;
Murphy, M ;
Knudsen, KE ;
Garfinkel, DJ ;
Curcio, MJ .
GENES & DEVELOPMENT, 1997, 11 (02) :255-269
[5]   The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae [J].
Huang, HH ;
Kahana, A ;
Gottschling, DE ;
Prakash, L ;
Liebman, SW .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (11) :6693-6699
[6]   THE YEAST DNA-REPAIR GENE RAD6 ENCODES A UBIQUITIN-CONJUGATING ENZYME [J].
JENTSCH, S ;
MCGRATH, JP ;
VARSHAVSKY, A .
NATURE, 1987, 329 (6135) :131-134
[7]   Translating the histone code [J].
Jenuwein, T ;
Allis, CD .
SCIENCE, 2001, 293 (5532) :1074-1080
[8]   STRUCTURAL AND FUNCTIONAL CONSERVATION OF 2 HUMAN HOMOLOGS OF THE YEAST DNA-REPAIR GENE RAD6 [J].
KOKEN, MHM ;
REYNOLDS, P ;
JASPERSDEKKER, I ;
PRAKASH, L ;
PRAKASH, S ;
BOOTSMA, D ;
HOEIJMAKERS, JHJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (20) :8865-8869
[9]   Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome [J].
Kornberg, RD ;
Lorch, YL .
CELL, 1999, 98 (03) :285-294
[10]  
MADURA K, 1993, J BIOL CHEM, V268, P12046