Weak greedy algorithms

被引:127
作者
Temlyakov, VN [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
D O I
10.1023/A:1018917218956
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Theoretical greedy type algorithms are studied: a Weak Greedy Algorithm, a Weak Orthogonal Greedy Algorithm, and a Weak Relaxed Greedy Algorithm. These algorithms are defined by weaker assumptions than their analogs the Pure Greedy Algorithm, an Orthogonal Greedy Algorithm, and a Relaxed Greedy Algorithm. The weaker assumptions make these new algorithms more ready for practical implementation. We prove the convergence theorems and also give estimates for the rate of approximation by means of these algorithms. The convergence and the estimates apply to approximation from an arbitrary dictionary in a Hilbert space.
引用
收藏
页码:213 / 227
页数:15
相关论文
共 25 条
[1]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[2]   Adaptive greedy approximations [J].
Davis, G ;
Mallat, S ;
Avellaneda, M .
CONSTRUCTIVE APPROXIMATION, 1997, 13 (01) :57-98
[3]  
DeVore R. A., 1998, Acta Numerica, V7, P51, DOI 10.1017/S0962492900002816
[4]   COMPRESSION OF WAVELET DECOMPOSITIONS [J].
DEVORE, RA ;
JAWERTH, B ;
POPOV, V .
AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (04) :737-785
[5]   Nonlinear approximation in finite-dimensional spaces [J].
DeVore, RA ;
Temlyakov, VN .
JOURNAL OF COMPLEXITY, 1997, 13 (04) :489-508
[6]   Some remarks on greedy algorithms [J].
DeVore, RA ;
Temlyakov, VN .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (2-3) :173-187
[7]  
DeVore RA., 1995, J FOURIER ANAL APPL, V2, P29, DOI [DOI 10.1007/S00041-001-4021-8, 10.1007/s00041-001-4021-8]
[8]  
Donahue MJ, 1997, CONSTR APPROX, V13, P187
[9]  
Donoho D. L., 1993, Applied and Computational Harmonic Analysis, V1, P100, DOI 10.1006/acha.1993.1008
[10]  
DONOHO DL, 1995, CART BEST ORTHO BASI, P1