Upper bounds on the maximal number of facets of 0/1-polytopes

被引:14
作者
Fleiner, T
Kaibel, V
Rote, G
机构
[1] Ctr Wiskunde & Informat, NL-1098 SJ Amsterdam, Netherlands
[2] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
[3] Free Univ Berlin, Inst Informat, D-14195 Berlin, Germany
关键词
D O I
10.1006/eujc.1999.0326
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two new upper bounds on the number of facets that a d-dimensional 0/1-polytope can have. The first one is 2(d-1)!+2(d-1) (which is the best one currently known for small dimensions), while the second one of O((d - 2)!) is the best known bound for large dimensions. (C) 2000 Academic Press.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 14 条
[1]   ON THE MAXIMAL NUMBER OF EDGES OF CONVEX DIGITAL POLYGONS INCLUDED INTO AN MXM-GRID [J].
ACKETA, DM ;
ZUNIC, JD .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 69 (02) :358-368
[2]  
AICHHOLZER O, 1998, IN PRESS POLYTOPES C
[3]  
ANDREWS GE, 1961, T AM MATH SOC, V99, P272
[4]  
ANGREWS GE, 1963, T AM MATH SOC, V106, P270
[5]  
Arnol'd V. I., 1980, FUNCT ANAL APPL, V14, p[1, 79]
[6]   The convex hull of the integer points in a large ball [J].
Barany, I ;
Larman, DG .
MATHEMATISCHE ANNALEN, 1998, 312 (01) :167-181
[7]  
CHRISTOF T, 1997, SMAPO SMALL O1 POLYT
[8]   A BOUND, IN TERMS OF ITS VOLUME, FOR THE NUMBER OF VERTICES OF A CONVEX POLYHEDRON WHEN THE VERTICES HAVE INTEGER COORDINATES [J].
KONYAGIN, SV ;
SEVASTYANOV, KA .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1984, 18 (01) :11-13
[9]  
KORTENKAMP U, 1997, 01 POLYTOPES MANY FA
[10]   Extremal properties of 0/1-polytopes [J].
Kortenkamp, UH ;
RichterGebert, J ;
Sarangarajan, A ;
Ziegler, GM .
DISCRETE & COMPUTATIONAL GEOMETRY, 1997, 17 (04) :439-448