Fission yeast homologs of human CENP-B have redundant functions affecting cell growth and chromosome segregation

被引:40
作者
Baum, M [1 ]
Clarke, L [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Mol Cellular & Dev Biol, Santa Barbara, CA 93106 USA
关键词
D O I
10.1128/MCB.20.8.2852-2864.2000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two functionally important DNA sequence elements in centromeres of the fission yeast Schizosaccharomyces pombe are the centromeric central core and the g-type repeat. both of these DNA elements show internal functional redundancy that is not correlated with a conserved DNA sequence. Specific, but degenerate, sequences in these elements are bound in vitro by the S. pombe DNA-binding proteins Abp1p (also called Cbp1p) and Cbhp, which are related to the mammalian centromere DNA-binding protein CENP-B, In this study, we determined that Abp1p binds to at least one of its target sequences within S, pombe centromere II central core (cc2) DNA with an affinity (K-s = 7 x 10(9) M-1) higher than those of other known centromere DNA-binding proteins for their cognate targets. In vivo, epitope-tagged Cbhp associated with centromeric K repeat chromatin, as well as with noncentromeric regions. Like abp1(+)/cbp1(+), we found that cbh(+) is not essential in fission yeast, but a strain carrying deletions of both genes (Delta abp1 Delta cbh) is extremely compromised in growth rate and morphology and missegregates chromosomes at very high frequency, The synergism between the two null mutations suggests that these proteins perform redundant functions in S. pombe chromosome segregation. In vitro assays with cell extracts with these proteins depleted allowed the specific assignments of several binding sites for them within cc2 and the K-type repeat. Redundancy observed at the centromere DNA Level appears to be reflected at the protein level, as no single member of the CENP-B-related protein family is essential for proper chromosome segregation in fission yeast. The relevance of these findings to mammalian centromeres is discussed.
引用
收藏
页码:2852 / 2864
页数:13
相关论文
共 73 条
[1]   Centromeres, checkpoints and chromatid cohesion [J].
Allshire, RC .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1997, 7 (02) :264-273
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]  
[Anonymous], 1989, MOL BIOL FISSION YEA
[4]  
BAKER RE, 1986, J BIOL CHEM, V261, P5275
[5]  
BAKER RE, 1989, J BIOL CHEM, V264, P10843
[6]   ISOLATION OF THE GENE ENCODING THE SACCHAROMYCES-CEREVISIAE CENTROMERE-BINDING PROTEIN CP1 [J].
BAKER, RE ;
MASISON, DC .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (06) :2458-2467
[7]   THE CENTROMERIC K-TYPE REPEAT AND THE CENTRAL CORE ARE TOGETHER SUFFICIENT TO ESTABLISH A FUNCTIONAL SCHIZOSACCHAROMYCES-POMBE CENTROMERE [J].
BAUM, M ;
NGAN, VK ;
CLARKE, L .
MOLECULAR BIOLOGY OF THE CELL, 1994, 5 (07) :747-761
[8]  
BOULANGER PA, 1987, J BIOL CHEM, V262, P15098
[9]   NATURE OF DNA-SEQUENCES AT THE ATTACHMENT REGIONS OF GENES TO THE NUCLEAR MATRIX [J].
BOULIKAS, T .
JOURNAL OF CELLULAR BIOCHEMISTRY, 1993, 52 (01) :14-22
[10]   Mutations of mitotic checkpoint genes in human cancers [J].
Cahill, DP ;
Lengauer, C ;
Yu, J ;
Riggins, GJ ;
Willson, JKV ;
Markowitz, SD ;
Kinzler, KW ;
Vogelstein, B .
NATURE, 1998, 392 (6673) :300-303