Some remarks on the supermodular order

被引:87
作者
Müller, A
Scarsini, M
机构
[1] Univ Karlsruhe, Inst Wirtschaftstheorie & Operat Res, D-76128 Karlsruhe, Germany
[2] Univ Annunzio, Dipartimento Sci, I-65127 Pescara, Italy
关键词
dependence orders; supermodular order; L-superadditive functions; weak convergence; concordance;
D O I
10.1006/jmva.1999.1867
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we solve two open problems posed by Joe (1997) concerning the supermodular order. First we give an example which shows that the supermodular order is strictly stronger than the concordance order for dimension d = 3. Second we show that the supermodular order fulfils all desirable properties of a multivariate positive dependence order. We especially prove the non-trivial fact that it is closed with respect to weak convergence. This is applied to give a complete characterization of the supermodular order for multivariate normal distributions. (C) 2000 Academic Press.
引用
收藏
页码:107 / 119
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 1995, LECT NOTES STAT
[2]  
B?uerle N., 1997, COMMUN STAT STOCHAST, V13, P181
[3]  
B├a┬nuerle N., 1998, ASTIN BULL, V28, P59, DOI 10.2143/AST.28.1.519079
[4]   CONDITIONALLY ORDERED DISTRIBUTIONS [J].
BLOCK, HW ;
SAMPSON, AR .
JOURNAL OF MULTIVARIATE ANALYSIS, 1988, 27 (01) :91-104
[5]   Orthant orderings of discrete random vectors [J].
Dyckerhoff, R ;
Mosler, K .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 62 (02) :193-205
[6]   MULTIVARIATE CONCORDANCE [J].
JOE, H .
JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 35 (01) :12-30
[7]  
Joe H., 1997, MULTIVARIATE MODELS
[8]  
Marshall A., 1979, Inequalities: Theory of Majorization and Its Applications
[9]  
Meester LE., 1993, PROBAB ENG INFORM SC, V7, P343
[10]   Stop-loss order for portfolios of dependent risks [J].
Muller, A .
INSURANCE MATHEMATICS & ECONOMICS, 1997, 21 (03) :219-223