MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS

被引:7549
作者
Koren, Yehuda [1 ]
Bell, Robert [1 ]
Volinsky, Chris [1 ]
机构
[1] Yahoo Res, Haifa, Israel
关键词
D O I
10.1109/MC.2009.263
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
As the Netflix Prize competition has demonstrated, matrix factorization models are superior to classic nearest-neighbor techniques for producing product recommendations, allowing the incorporation of additional information such as implicit levels. © 2009, IEEE. All rights reserved.
引用
收藏
页码:30 / 37
页数:8
相关论文
共 12 条
[1]  
[Anonymous], 2009, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, DOI DOI 10.1145/1557019.1557072
[2]  
[Anonymous], 2007, KDD CUP WORKSH
[3]  
[Anonymous], 2007, SIGKDD Explorations, DOI DOI 10.1145/1345448.134546
[4]  
BELLIVEAU PP, 2007, PHARM EDUC, V7, P43, DOI DOI 10.1080/15602210601084531
[5]  
Funk Simon, 2006, NETFLIX UPDATE TRY T
[6]   USING COLLABORATIVE FILTERING TO WEAVE AN INFORMATION TAPESTRY [J].
GOLDBERG, D ;
NICHOLS, D ;
OKI, BM ;
TERRY, D .
COMMUNICATIONS OF THE ACM, 1992, 35 (12) :61-70
[7]   Collaborative Filtering for Implicit Feedback Datasets [J].
Hu, Yifan ;
Koren, Yehuda ;
Volinsky, Chris .
ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, :263-+
[8]  
Koren Yehuda, 2008, PROC 14 ACM SIGKDD I, P426
[9]  
Mnih A., 2008, Advances in Neural Information Processing Systems
[10]  
Paterek A., 2007, P KDD CUP WORKSH4, P5, DOI [DOI 10.1145/1557019.1557072, DOI 10.1137/1.9781611972757.43]