Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase

被引:539
作者
Marshall, NF [1 ]
Peng, JM [1 ]
Xie, Z [1 ]
Price, DH [1 ]
机构
[1] UNIV IOWA,DEPT BIOCHEM,IOWA CITY,IA 52242
关键词
D O I
10.1074/jbc.271.43.27176
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The entry of RNA polymerase II into a productive mode of elongation is controlled, in part, by the postinitiation activity of positive transcription elongation factor b (P-TEFb) (Marshall, N.F., and Price, D.H. (1995) J. Biol. Chem. 270, 12335-12338). We report here that removal of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II abolishes productive elongation. Correspondingly, we found that P-TEFb can phosphorylate the CTD of pure RNA polymerase II. Furthermore, P-TEFb can phosphorylate the CTD of RNA polymerase II when the polymerase is in an early elongation complex. Both the function and kinase activity of P-TEFb are blocked by the drugs 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and H-8. P-TEFb is distinct from transcription factor IIH (TFIIH) because the two factors have no subunits in common, P-TEFb is more sensitive to DRB than is TFIIH, and most importantly, TFIIH cannot substitute functionally for P-TEFb. We propose that phosphorylation of the CTD by P-TEFb controls the transition from abortive into productive elongation mode.
引用
收藏
页码:27176 / 27183
页数:8
相关论文
共 70 条
[1]   REQUIREMENT FOR TFIIH KINASE-ACTIVITY IN TRANSCRIPTION BY RNA-POLYMERASE-II [J].
AKOULITCHEV, S ;
MAKELA, TP ;
WEINBERG, RA ;
REINBERG, D .
NATURE, 1995, 377 (6549) :557-560
[2]   THE C-TERMINAL DOMAIN OF THE LARGEST SUBUNIT OF RNA POLYMERASE-II OF SACCHAROMYCES-CEREVISIAE, DROSOPHILA-MELANOGASTER, AND MAMMALS - A CONSERVED STRUCTURE WITH AN ESSENTIAL FUNCTION [J].
ALLISON, LA ;
WONG, JKC ;
FITZPATRICK, VD ;
MOYLE, M ;
INGLES, CJ .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (01) :321-329
[3]   Purification of the Drosophila RNA polymerase II general transcription factors [J].
Austin, RJ ;
Biggin, MD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (12) :5788-5792
[4]   GENETIC-ANALYSIS OF THE REPETITIVE CARBOXYL-TERMINAL DOMAIN OF THE LARGEST SUBUNIT OF MOUSE RNA POLYMERASE-II [J].
BARTOLOMEI, MS ;
HALDEN, NF ;
CULLEN, CR ;
CORDEN, JL .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (01) :330-339
[5]   TYROSINE PHOSPHORYLATION OF MAMMALIAN RNA POLYMERASE-II CARBOXYL-TERMINAL DOMAIN [J].
BASKARAN, R ;
DAHMUS, ME ;
WANG, JYJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (23) :11167-11171
[6]   DIFFERENTIAL EXPRESSION OF C-MYB MESSENGER-RNA IN MURINE-B LYMPHOMAS BY A BLOCK TO TRANSCRIPTION ELONGATION [J].
BENDER, TP ;
THOMPSON, CB ;
KUEHL, WM .
SCIENCE, 1987, 237 (4821) :1473-1476
[7]   REGULATION OF TRANSCRIPTIONAL ELONGATION BY RNA-POLYMERASE-II [J].
BENTLEY, DL .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1995, 5 (02) :210-216
[8]  
BRICKEY WJ, 1995, GENETICS, V140, P599
[9]  
CADENA DL, 1987, J BIOL CHEM, V262, P12468
[10]   THE ACTIVITY OF COOH-TERMINAL DOMAIN PHOSPHATASE IS REGULATED BY A DOCKING SITE ON RNA-POLYMERASE-II AND BY THE GENERAL TRANSCRIPTION FACTORS IIF AND IIB [J].
CHAMBERS, RS ;
WANG, BQ ;
BURTON, ZF ;
DAHMUS, ME .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (25) :14962-14969