An exterior newton method for strictly convex quadratic programming

被引:4
作者
Coleman, TF [1 ]
Liu, JG
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[2] Cornell Univ, Ctr Appl Math, Ithaca, NY 14853 USA
[3] Univ N Texas, Dept Math, Denton, TX 76203 USA
基金
美国国家科学基金会;
关键词
convex quadratic programming; exterior methods; Newton methods; dual problems;
D O I
10.1023/A:1008773230148
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose an exterior Newton method for strictly convex quadratic programming (QP) problems. This method is based on a dual formulation: a sequence of points is generated which monotonically decreases the dual objective function. We show that the generated sequence converges globally and quadratically to the solution (if the QP is feasible and certain nondegeneracy assumptions are satisfied). Measures for detecting infeasibility are provided. The major computation in each iteration is to solve a KKT-like system. Therefore, given an effective symmetric sparse linear solver, the proposed method is suitable for large sparse problems. Preliminary numerical results are reported.
引用
收藏
页码:5 / 32
页数:28
相关论文
共 25 条
[1]  
Aho A.V., 1974, The Design and Analysis of Computer Algorithms
[2]  
BERKELAAR AB, 1997, ADV SENSITIVITY ANAL, pCH6
[3]  
Carpenter T. J., 1993, Computational Optimization and Applications, V2, P5, DOI 10.1007/BF01299140
[4]   A GLOBALLY AND SUPERLINEARLY CONVERGENT ALGORITHM FOR CONVEX QUADRATIC PROGRAMS WITH SIMPLE BOUNDS [J].
Coleman, Thomas F. ;
Hulbert, Laurie A. .
SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (02) :298-321
[5]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[6]  
Dikin I.I., 1967, Soviet Mathematics Doklady, V8, P674
[7]  
Fletcher R., 1981, PRACTICAL METHODS OP
[8]  
Gill M., 1981, Practical Optimization
[9]  
GOLDFARB D, 1991, MATH PROGRAM, V49, P325
[10]  
GOLDFARB D, 1972, NUMERICAL METHODS NO