Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons

被引:166
作者
Desmaisons, D [1 ]
Vincent, JD [1 ]
Lledo, PM [1 ]
机构
[1] CNRS, Inst Alfred Fessard, F-91198 Gif Sur Yvette, France
关键词
mitral cells; sodium current; synchronization; timing device; inhibitory interneurons; olfactory processing;
D O I
10.1523/JNEUROSCI.19-24-10727.1999
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Rhythmic patterns of neuronal activity have been found at multiple levels of various sensory systems. In the olfactory bulb or the antennal lobe, oscillatory activity exhibits a broad range of frequencies and has been proposed to encode sensory information. However, the neural mechanisms underlying these oscillations are unknown. Bulbar oscillations might be an emergent network property arising from neuronal interactions and/or resulting from intrinsic oscillations in individual neurons. Here we show that mitral cells (output neurons of the olfactory bulb) display subthreshold oscillations of their membrane potential. These oscillations are mediated by tetrodotoxin-sensitive sodium currents and range in frequency from 10 to 50 Hz as a function of resting membrane potential. Because the voltage dependency of oscillation frequency was found to be similar to that for action potential generation, we studied how subthreshold oscillations could influence the timing of action potentials elicited by synaptic inputs. Indeed, we found that subthreshold oscillatory activity can trigger the precise occurrence of action potentials generated in response to EPSPs. Furthermore, IPSPs were found to set the phase of subthreshold oscillations and can lead to "rebound" spikes with a constant latency. Because intrinsic oscillations of membrane potential enable very precise temporal control of neuronal firing, we propose that these oscillations provide an effective means to synchronize mitral cell subpopulations during the processing of olfactory information.
引用
收藏
页码:10727 / 10737
页数:11
相关论文
共 68 条
[1]   Olfactory reactions in the brain of the hedgehog [J].
Adrian, ED .
JOURNAL OF PHYSIOLOGY-LONDON, 1942, 100 (04) :459-473
[2]   SUBTHRESHOLD NA+-DEPENDENT THETA-LIKE RHYTHMICITY IN STELLATE CELLS OF ENTORHINAL CORTEX LAYER-II [J].
ALONSO, A ;
LLINAS, RR .
NATURE, 1989, 342 (6246) :175-177
[3]   MEMBRANE-POTENTIAL OSCILLATIONS UNDERLYING FIRING PATTERNS IN NEOCORTICAL NEURONS [J].
AMITAI, Y .
NEUROSCIENCE, 1994, 63 (01) :151-161
[4]   Multiday recordings from olfactory bulb neurons in awake freely moving rats: Spatially and temporally organized variability in odorant response properties [J].
Bhalla, US ;
Bower, JM .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 1997, 4 (03) :221-256
[5]   TEMPORAL STRUCTURE IN SPATIALLY ORGANIZED NEURONAL ENSEMBLES - A ROLE FOR INTERNEURONAL NETWORKS [J].
BUZSAKI, G ;
CHROBAK, JJ .
CURRENT OPINION IN NEUROBIOLOGY, 1995, 5 (04) :504-510
[6]   Membrane and synaptic properties of mitral cells in slices of rat olfactory bulb [J].
Chen, WR ;
Shepherd, GM .
BRAIN RESEARCH, 1997, 745 (1-2) :189-196
[7]   SALAMANDER OLFACTORY-BULB NEURONAL-ACTIVITY OBSERVED BY VIDEO-RATE, VOLTAGE-SENSITIVE DYE IMAGING .3. SPATIAL AND TEMPORAL PROPERTIES OF RESPONSES EVOKED BY ODORANT STIMULATION [J].
CINELLI, AR ;
HAMILTON, KA ;
KAUER, JS .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 73 (05) :2053-2071
[8]   SYNCHRONIZATION OF NEURONAL-ACTIVITY IN HIPPOCAMPUS BY INDIVIDUAL GABAERGIC INTERNEURONS [J].
COBB, SR ;
BUHL, EH ;
HALASY, K ;
PAULSEN, O ;
SOMOGYI, P .
NATURE, 1995, 378 (6552) :75-78
[9]   Making waves in the neocortex [J].
Connors, BW ;
Amitai, Y .
NEURON, 1997, 18 (03) :347-349
[10]   Persistent sodium current in mammalian central neurons [J].
Crill, WE .
ANNUAL REVIEW OF PHYSIOLOGY, 1996, 58 :349-362