Culturability and in situ abundance of pelagic bacteria from the North Sea

被引:502
作者
Eilers, H [1 ]
Pernthaler, J [1 ]
Glöckner, FO [1 ]
Amann, R [1 ]
机构
[1] Max Planck Inst Marine Mikrobiol, D-28359 Bremen, Germany
关键词
D O I
10.1128/AEM.66.7.3044-3051.2000
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The culturability of abundant members of the domain Bacteria in North Sea bacterioplankton was investigated by a combination of various cultivation strategies and cultivation-independent 16S rRNA-based techniques, We retrieved 16S rRNA gene (rDNA) clones from environmental DNAs and determined the in situ abundance of different groups and genera by fluorescence in situ hybridization (FISH). A culture collection of 145 strains was established by plating on oligotrophic medium, Isolates were screened by FISH, amplified ribosomal DNA restriction analysis (ARDRA), and sequencing of representative 165 rDNAs. The majority of isolates were members of the genera Pseudoalteromonas, Alteromonas, and Vibrio. Despite being readily culturable, they constituted only a minor fraction of the bacterioplankton community. They were not detected in the 165 rDNA library, and FISH indicated rare (<1% of total cell counts) occurrence as large, rRNA-rich, particle-associated bacteria. Conversely, abundant members of the Cytophaga-Flavobacteria and gamma proteobacterial SARB6 dusters, identified by FISH as 17 to 30% and up to 10% of total cells in the North Sea bacterioplankton, respectively, were cultured rarely or not at all, Whereas SAR86-affiliated clones dominated the 165 rDNA library (44 of 53 clones), no clone affiliated to the Cytophaga-Flavobacterum cluster was retrieved. The only readily culturable abundant group of marine bacteria was related to the genus Roseobacter, The group made up 10% of the total cells in the summer, and the corresponding sequences were also present in our clone library. Rarefaction analysis of the ARDRA patterns of all of the isolates suggested that the total culturable diversity by our method was high and still not covered by the numbers of isolated strains but was almost saturated for the gamma proteobacteria, This predicts a limit to the isolation of unculturable marine bacteria, particularly the gamma-proteobacterial SAR86 cluster, as long as no new techniques for isolation are available and thus contrasts with more optimistic accounts of the culturability of marine bacterioplankton.
引用
收藏
页码:3044 / 3051
页数:8
相关论文
共 60 条
[1]  
Acinas SG, 1999, APPL ENVIRON MICROB, V65, P514
[2]  
ALLISON DG, 1987, J GEN MICROBIOL, V133, P1319
[3]   FLUORESCENT-OLIGONUCLEOTIDE PROBING OF WHOLE CELLS FOR DETERMINATIVE, PHYLOGENETIC, AND ENVIRONMENTAL-STUDIES IN MICROBIOLOGY [J].
AMANN, RI ;
KRUMHOLZ, L ;
STAHL, DA .
JOURNAL OF BACTERIOLOGY, 1990, 172 (02) :762-770
[4]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[5]   STARVATION-SURVIVAL PATTERNS OF 16 FRESHLY ISOLATED OPEN-OCEAN BACTERIA [J].
AMY, PS ;
MORITA, RY .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1983, 45 (03) :1109-1115
[6]   Diversity and association of psychrophilic bacteria in Antarctic sea ice [J].
Bowman, JP ;
McCammon, SA ;
Brown, MV ;
Nichols, DS ;
McMeekin, TA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (08) :3068-3078
[7]   PHYLOGENETIC ANALYSIS OF A NATURAL MARINE BACTERIOPLANKTON POPULATION BY RIBOSOMAL-RNA GENE CLONING AND SEQUENCING [J].
BRITSCHGI, TB ;
GIOVANNONI, SJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1991, 57 (06) :1707-1713
[8]   GENE ORGANIZATION AND PRIMARY STRUCTURE OF A RIBOSOMAL-RNA OPERON FROM ESCHERICHIA-COLI [J].
BROSIUS, J ;
DULL, TJ ;
SLEETER, DD ;
NOLLER, HF .
JOURNAL OF MOLECULAR BIOLOGY, 1981, 148 (02) :107-127
[9]   Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization [J].
BuchholzCleven, BEE ;
Rattunde, B ;
Straub, KL .
SYSTEMATIC AND APPLIED MICROBIOLOGY, 1997, 20 (02) :301-309
[10]   VIABILITY AND ISOLATION OF MARINE-BACTERIA BY DILUTION CULTURE - THEORY, PROCEDURES, AND INITIAL RESULTS [J].
BUTTON, DK ;
SCHUT, F ;
QUANG, P ;
MARTIN, R ;
ROBERTSON, BR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1993, 59 (03) :881-891