Towards biohythane production from biomass: Influence of operational stage on anaerobic fermentation and microbial community

被引:90
作者
Si, Buchun [1 ]
Liu, Zhidan [1 ]
Zhang, Yuanhui [2 ]
Li, Jiaming [1 ]
Shen, Ruixia [1 ]
Zhu, Zhangbing [1 ]
Xing, Xinhui [3 ]
机构
[1] China Agr Univ, Coll Water Resources & Civil Engn, Lab Environm Enhancing Energy E2E, Beijing 100083, Peoples R China
[2] Univ Illinois, Dept Agr & Biol Engn, Urbana, IL 61801 USA
[3] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Biohythane; Operational stage; Biohydrogen; Two-stage; Microbial diversity; SYNTROPHIC ACETATE OXIDATION; COMPLETE GENOME SEQUENCE; CHAIN FATTY-ACIDS; GEN; NOV; HYDROGEN-PRODUCTION; FOOD WASTE; METHANOGENIC BIOREACTORS; METHANE PRODUCTION; ENERGY RECOVERY; UASB REACTOR;
D O I
10.1016/j.ijhydene.2015.06.045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biohythane consisting of biohydrogen and biomethane via two-stage fermentation is a promising energy carrier for vehicle use. In this study, one-stage biomethane system using upflow anaerobic sludge blanket (UASB) and packed bed reactor (PBR) was shifted to the two-stage biohythane system to study the influence of operational stage. Compared with biomethane system, the biohythane process achieved higher COD removal and energy recovery. Particularly, the total COD removal in the PBR system rose significantly from 74.0 to 97.3%, corresponding to an increased energy recovery from 54.2 to 67.1%. The first-stage hydrogen fermentation had a positive effect on subsequent biomethane production in biohythane system. The analysis of microbial diversity using Illumina MiSeq sequencing showed significant changes of microorganisms in biomethane reactor, which revealed the variation of biochemical pathways. Compared to biomethane system, the relative abundance of acidogenesis bacteria was reduced in biohythane system, such as family Clostridiaceae. By contrast, the amount of acetogens (Syntrophaceae, Syntrophomonadaceae and Desulfovibrionaceae) and acetate-oxidizing bacteria (Spirochaetes) was increased. The archaea community remained stable, and mainly consisted of acetoclastic methanogens from family Methanosaetaceae. These results indicated the biomethane reactors in biohythane system had more efficient acidogenesis and acetate-utilizing microbial community. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4429 / 4438
页数:10
相关论文
共 60 条
[1]  
[Anonymous], 2006, STANDARD METHODS EXA, DOI DOI 10.5860/CHOICE.37-2792
[2]   Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview [J].
Argun, Hidayet ;
Kargi, Fikret .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (13) :7443-7459
[3]  
Carlier JP, 2002, INT J SYST EVOL MICR, V52, P983, DOI 10.1099/00207713-52-3-983
[4]   Metabolic flux network analysis of fermentative hydrogen production: Using Clostridium tyrobutyricum as an example [J].
Cheng, Hai-Hsuan ;
Whang, Liang-Ming ;
Lin, Che-An ;
Liu, I-Chun ;
Wu, Chao-Wei .
BIORESOURCE TECHNOLOGY, 2013, 141 :233-239
[5]   Characterization of microbial community in the two-stage process for hydrogen and methane production from food waste [J].
Chu, Chun-Feng ;
Ebie, Yoshitaka ;
Xu, Kai-Qin ;
Li, Yu-You ;
Inamori, Yuhei .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (15) :8253-8261
[6]   Two-phase anaerobic digestion for production of hydrogen-methane mixtures [J].
Cooney, Michael ;
Maynard, Nathan ;
Cannizzaro, Christopher ;
Benemann, John .
BIORESOURCE TECHNOLOGY, 2007, 98 (14) :2641-2651
[7]   Faecalicoccus acidiformans gen. nov., sp nov., isolated from the chicken caecum, and reclassification of Streptococcus pleomorphus (Barnes et al. 1977), Eubacterium biforme (Eggerth 1935) and Eubacterium cylindroides (Cato et al. 1974) as Faecalicoccus pleomorphus comb. nov., Holdemanella biformis gen. nov., comb. nov and Faecalitalea cylindroides gen. nov., comb. nov., respectively, within the family Erysipelotrichaceae [J].
De Maesschalck, Celine ;
Van Immerseel, Filip ;
Eeckhaut, Venessa ;
De Baere, Siegrid ;
Cnockaert, Margo ;
Croubels, Siska ;
Haesebrouck, Freddy ;
Ducatelle, Richard ;
Vandamme, Peter .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2014, 64 :3877-3884
[8]   Complete genome sequence of Syntrophothermus lipocalidus type strain (TGB-C1T) [J].
Djao, Olivier Duplex Ngatchou ;
Zhang, Xiaojing ;
Lucas, Susan ;
Lapidus, Alla ;
Del Rio, Tijana Glavina ;
Nolan, Matt ;
Tice, Hope ;
Cheng, Jan-Fang ;
Han, Cliff ;
Tapia, Roxanne ;
Goodwin, Lynne ;
Pitluck, Sam ;
Liolios, Konstantinos ;
Ivanova, Natalia ;
Mavromatis, Konstantinos ;
Mikhailova, Natalia ;
Ovchinnikova, Galina ;
Pati, Amrita ;
Brambilla, Evelyne ;
Chen, Amy ;
Palaniappan, Krishna ;
Land, Miriam ;
Hauser, Loren ;
Chang, Yun-Juan ;
Jeffries, Cynthia D. ;
Rohde, Manfred ;
Sikorski, Johannes ;
Spring, Stefan ;
Goeker, Markus ;
Detter, John C. ;
Woyke, Tanja ;
Bristow, James ;
Eisen, Jonathan A. ;
Markowitz, Victor ;
Hugenholtz, Philip ;
Kyrpides, Nikos C. ;
Klenk, Hans-Peter .
STANDARDS IN GENOMIC SCIENCES, 2010, 3 (03) :267-275
[9]   Monitoring the biochemical hydrogen and methane potential of the two-stage dark-fermentative process [J].
Giordano, Andrea ;
Cantu, Cristina ;
Spagni, Alessandro .
BIORESOURCE TECHNOLOGY, 2011, 102 (06) :4474-4479
[10]   Complete genome sequence of the novel Porphyromonadaceae bacterium strain ING2-E5B isolated from a mesophilic lab-scale biogas reactor [J].
Hahnke, Sarah ;
Maus, Irena ;
Wibberg, Daniel ;
Tomazetto, Geizecler ;
Puehler, Alfred ;
Klocke, Michael ;
Schlueter, Andreas .
JOURNAL OF BIOTECHNOLOGY, 2015, 193 :34-36