Consistent estimation of the number of dynamic factors in a large N and T panel

被引:120
作者
Amengual, Dante [1 ]
Watson, Mark W.
机构
[1] Princeton Univ, Dept Econ, Princeton, NJ 08544 USA
[2] Princeton Univ, Woodrow Wilson Sch, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
approximate factor model; Bai-Ng estimator; dynamic factor model;
D O I
10.1198/073500106000000585
中图分类号
F [经济];
学科分类号
02 ;
摘要
Bai and Ng proposed a consistent estimator for the number of static factors in a large N and T approximate factor model. This article shows how the Bai-Ng estimator can be modified to consistently estimate the number of dynamic factors in a restricted dynamic factor model. The modification is straightforward: The standard Bai-Ng estimator is applied to residuals obtained by projecting the observed data onto lagged values of principal-components estimates of the static factors.
引用
收藏
页码:91 / 96
页数:6
相关论文
共 15 条
[1]   Inferential theory for factor models of large dimensions. [J].
Bai, J .
ECONOMETRICA, 2003, 71 (01) :135-171
[2]  
BAI J, 2005, UNPUB CONFIDENCE INT
[3]  
Bai J. S., 2006, Determining the number of factors in approximate factor models, errata
[4]   Determining the number of factors in approximate factor models [J].
Bai, JS ;
Ng, S .
ECONOMETRICA, 2002, 70 (01) :191-221
[5]   Determining the number of primitive shocks in factor models [J].
Bai, Jushan ;
Ng, Serena .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2007, 25 (01) :52-60
[6]   Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach [J].
Bernanke, BS ;
Boivin, J ;
Eliasz, P .
QUARTERLY JOURNAL OF ECONOMICS, 2005, 120 (01) :387-422
[7]   The generalized dynamic factor model: One-sided estimation and forecasting [J].
Forni, M ;
Hallin, M ;
Lippi, M ;
Reichlin, L .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (471) :830-840
[8]   The generalized dynamic-factor model: Identification and estimation [J].
Forni, M ;
Hallin, M ;
Lippi, M ;
Reichlin, L .
REVIEW OF ECONOMICS AND STATISTICS, 2000, 82 (04) :540-554
[9]  
FORNI M, 2003, 4133 CEPR
[10]  
GIANNONE D, 2004, NBER MACROECONOMCICS, P00161