The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic

被引:118
作者
Behnia, Rudy
Barr, Francis A.
Flanagan, John J.
Barlowe, Charles
Munro, Sean [1 ]
机构
[1] MRC, Mol Biol Lab, Cambridge CB2 2QH, England
[2] Max Planck Inst Biochem, D-82152 Martinsried, Germany
[3] Dartmouth Med Sch, Dept Biochem, Hanover, NH 03755 USA
基金
英国医学研究理事会;
关键词
D O I
10.1083/jcb.200607151
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The mammalian Golgi protein GRASP65 is required in assays that reconstitute cisternal stacking and vesicle tethering. Attached to membranes by an N-terminal myristoyl group, it recruits the coiled-coil protein GM130. The relevance of this system to budding yeasts has been unclear, as they lack an obvious orthologue of GM130, and their only GRASP65 relative (Grh1) lacks a myristoylation site and has even been suggested to act in a mitotic checkpoint. In this study, we show that Grh1 has an N-terminal amphipathic helix that is N-terminally acetylated and mediates association with the cis-Golgi. We find that Grh1 forms a complex with a previously uncharacterized coiled-coil protein, Ydl099w (Bug1). In addition, Grh1 interacts with the Sec23/24 component of the COPII coat. Neither Grh1 nor Bug1 are essential for growth, but biochemical assays and genetic interactions with known mediators of vesicle tethering (Uso1 and Ypt1) suggest that the Grh1-Bug1 complex contributes to a redundant network of interactions that mediates consumption of COPII vesicles and formation of the cis-Golgi.
引用
收藏
页码:255 / 261
页数:7
相关论文
共 29 条
[1]   A rab requirement is not bypassed in SLY1-20 suppression [J].
Ballew, N ;
Liu, YT ;
Barlowe, C .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (04) :1839-1849
[2]   Coupled ER to Golgi transport reconstituted with purified cytosolic proteins [J].
Barlowe, C .
JOURNAL OF CELL BIOLOGY, 1997, 139 (05) :1097-1108
[3]   Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae [J].
Barr, FA ;
Nakamura, N ;
Warren, G .
EMBO JOURNAL, 1998, 17 (12) :3258-3268
[4]   Golgins in the structure and dynamics of the Golgi apparatus [J].
Barr, FA ;
Short, B .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (04) :405-413
[5]   GRASP65, a protein involved in the stacking of Golgi cisternae [J].
Barr, FA ;
Puype, M ;
Vandekerckhove, J ;
Warren, G .
CELL, 1997, 91 (02) :253-262
[6]   Targeting of the arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p [J].
Behnia, R ;
Panic, B ;
Whyte, JRC ;
Munro, S .
NATURE CELL BIOLOGY, 2004, 6 (05) :405-+
[7]   Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins [J].
Cao, XC ;
Ballew, N ;
Barlowe, C .
EMBO JOURNAL, 1998, 17 (08) :2156-2165
[8]   IDENTIFICATION AND STRUCTURE OF 4 YEAST GENES (SLY) THAT ARE ABLE TO SUPPRESS THE FUNCTIONAL LOSS OF YPT1, A MEMBER OF THE RAS SUPERFAMILY [J].
DASCHER, C ;
OSSIG, R ;
GALLWITZ, D ;
SCHMITT, HD .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (02) :872-885
[9]   Proteome survey reveals modularity of the yeast cell machinery [J].
Gavin, AC ;
Aloy, P ;
Grandi, P ;
Krause, R ;
Boesche, M ;
Marzioch, M ;
Rau, C ;
Jensen, LJ ;
Bastuck, S ;
Dümpelfeld, B ;
Edelmann, A ;
Heurtier, MA ;
Hoffman, V ;
Hoefert, C ;
Klein, K ;
Hudak, M ;
Michon, AM ;
Schelder, M ;
Schirle, M ;
Remor, M ;
Rudi, T ;
Hooper, S ;
Bauer, A ;
Bouwmeester, T ;
Casari, G ;
Drewes, G ;
Neubauer, G ;
Rick, JM ;
Kuster, B ;
Bork, P ;
Russell, RB ;
Superti-Furga, G .
NATURE, 2006, 440 (7084) :631-636
[10]   The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi [J].
Gillingham, AK ;
Tong, AHY ;
Boone, C ;
Munro, S .
JOURNAL OF CELL BIOLOGY, 2004, 167 (02) :281-292