Empirical Mode Decomposition Operator for Dewowing GPR Data

被引:20
作者
Battista, Bradley M. [1 ]
Addison, Adrian D. [1 ]
Knapp, Camelia C. [1 ]
机构
[1] Univ S Carolina, Dept Geol Sci, Columbia, SC 29208 USA
关键词
GROUND-PENETRATING RADAR;
D O I
10.2113/JEEG14.4.163
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Signal processing tools available to ground penetrating radar data used for shallow subsurface imaging and hydrogeophysical parameter estimation are significantly handled using the same tools available to seismic reflection data. Overall, the same tools produce interpretable images from both data types, but particular noise (wow noise) in electromagnetic data must be removed before stable and accurate quantitative results can be produced. Wow noise is an inherent, nonlinear electromagnetic interference and a significant component of GPR data. Further, the nonlinear and non-stationary nature of wow noise provides a strong argument for preprocessing radar traces with time-domain operators. Time-domain operators designed for nonlinear signals are under increasing development for both electromagnetic and acoustic signal processing. This work demonstrates optimal wow noise removal from ground penetrating radar data using the empirical mode decomposition. The technique provides a data-driven approach to empirically dewowing GPR data.
引用
收藏
页码:163 / 169
页数:7
相关论文
共 18 条
[1]  
ADDISON A, 2009, J ENVIRON ENG GEOPH, V14, P4
[2]  
BATTISTA, 2008, THESIS U S CAROLINA
[3]   Application of the empirical mode decomposition and Hilbert-Huang transform to seismic reflection data [J].
Battista, Bradley Matthew ;
Knapp, Camelia ;
McGee, Tom ;
Goebel, Vaughn .
GEOPHYSICS, 2007, 72 (02) :H29-H37
[4]   GROUND-PENETRATING RADAR FOR HIGH-RESOLUTION MAPPING OF SOIL AND ROCK STRATIGRAPHY [J].
DAVIS, JL ;
ANNAN, AP .
GEOPHYSICAL PROSPECTING, 1989, 37 (05) :531-551
[5]  
DIX H, 1949, GEOPHYSICS, V14, P17
[6]   ACQUISITION AND PROCESSING OF WIDE-APERTURE GROUND-PENETRATING RADAR DATA [J].
FISHER, E ;
MCMECHAN, GA ;
ANNAN, AP .
GEOPHYSICS, 1992, 57 (03) :495-504
[7]  
Gerlitz K, 1993, P S APPL GEOPH ENG E, P561
[8]  
Hardage B. A., 2006, Leading Edge, V25, P566, DOI 10.1190/1.2202660
[9]   The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].
Huang, NE ;
Shen, Z ;
Long, SR ;
Wu, MLC ;
Shih, HH ;
Zheng, QN ;
Yen, NC ;
Tung, CC ;
Liu, HH .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971) :903-995
[10]  
KUTRUBES DL, 1994, EXPANDED ABSTRACTS, P439