Non-parametric estimation of the residual distribution

被引:136
作者
Akritas, MG
Van Keilegom, I
机构
[1] Limburgs Univ Ctr, Diepenbeek, Belgium
[2] Penn State Univ, University Pk, PA 16802 USA
关键词
asymptotic representation; goodness-of-fit; non-parametric regression residuals; prediction intervals; residual distribution; weak convergence;
D O I
10.1111/1467-9469.00254
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a heteroscedastic regression model Y = m(X) + sigma (X)epsilon, where the functions m and sigma are "smooth", and epsilon is independent of X. An estimator of the distribution of epsilon based on non-parametric regression residuals is proposed and its weak convergence is obtained. Applications to prediction intervals and goodness-of-fit tests are discussed.
引用
收藏
页码:549 / 567
页数:19
相关论文
共 18 条
[1]  
BUCKLEY MJ, 1988, BIOMETRIKA, V75, P189, DOI 10.1093/biomet/75.2.189
[2]  
Devroye L. P, 1978, CAN J STAT, V6, P179
[3]   WEAK CONVERGENCE OF SAMPLE DISTRIBUTION FUNCTION WHEN PARAMETERS ARE ESTIMATED [J].
DURBIN, J .
ANNALS OF STATISTICS, 1973, 1 (02) :279-290
[4]  
GASSER T, 1984, SCAND J STAT, V11, P171
[5]   STRONG UNIFORM CONSISTENCY RATES FOR ESTIMATORS OF CONDITIONAL FUNCTIONALS [J].
HARDLE, W ;
JANSSEN, P ;
SERFLING, R .
ANNALS OF STATISTICS, 1988, 16 (04) :1428-1449
[6]  
HARDLE W, 1985, SCAND J STAT, V12, P233
[7]  
Huber P. J., 1981, ROBUST STAT
[8]   THE EMPIRICAL DISTRIBUTION FUNCTION OF RESIDUALS FROM GENERALIZED REGRESSION [J].
LOYNES, RM .
ANNALS OF STATISTICS, 1980, 8 (02) :285-298
[9]  
MACK YP, 1989, SANKHYA SER A, V51, P59
[10]   ESTIMATION OF HETEROSCEDASTICITY IN REGRESSION-ANALYSIS [J].
MULLER, HG ;
STADTMULLER, U .
ANNALS OF STATISTICS, 1987, 15 (02) :610-625