Hyperphosphorylated C-terminal repeat domain-associating proteins in the nuclear proteome link transcription to DNA/chromatin modification and RNA processing

被引:78
作者
Carty, SM [1 ]
Greenleaf, AL [1 ]
机构
[1] Duke Univ, Med Ctr, Durham, NC 27710 USA
关键词
D O I
10.1074/mcp.M200029-MCP200
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Using an interaction blot approach to search in the human nuclear proteome, we identified eight novel proteins that bind the hyperphosphorylated C-terminal repeat domain (phosphoCTD) of RNA polymerase II. Unexpectedly, five of the new phosphoCTD-associating proteins (PCAPs) represent either enzymes that act on DNA and chromatin (topoisomerase I, DNA (cytosine-5) methyltransferase 1, poly(ADP-ribose) polymerase-1) or proteins known to bind DNA (heterogeneous nuclear ribonucleoprotein (hnRNP) U/SAF-A, hnRNP D). The other three PCAPs represent factors involved in pre-mRNA metabolism as anticipated (CA150, NSAP1/hnRNP Q, hnRNP R) (note that hnRNP U/SAF-A and hnRNP D are also implicated in pre-mRNA metabolism). Identifying as PCAPs proteins involved in diverse DNA transactions suggests that the range of phosphoCTD functions extends far beyond just transcription and RNA processing. In view of the activities possessed by the DNA-directed PCAPs, it is likely that the phosphoCTD plays important roles in genome integrity, epigenetic regulation, and potentially nuclear structure. We present a model in which the phosphoCTD association of the PCAPs poises them to act either on the nascent transcript or on the DNA/chromatin template. We propose that the phosphoCTD of elongating RNA polymerase II is a major organizer of nuclear functions.
引用
收藏
页码:598 / 610
页数:13
相关论文
共 103 条
[1]   Identification of poly(ADP-ribose) polymerase as a transcriptional coactivator of the human T-cell leukemia virus type 1 tax protein [J].
Anderson, MG ;
Scoggin, KES ;
Simbulan-Rosenthal, CM ;
Steadman, JA .
JOURNAL OF VIROLOGY, 2000, 74 (05) :2169-2177
[2]   Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae [J].
Barillà, D ;
Lee, BA ;
Proudfoot, NJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (02) :445-450
[3]   DNA hypermethylation in tumorigenesis - epigenetics joins genetics [J].
Baylin, SB ;
Herman, JG .
TRENDS IN GENETICS, 2000, 16 (04) :168-174
[4]  
Bender CM, 1999, MOL CELL BIOL, V19, P6690
[5]   The mRNA assembly line: transcription and processing machines in the same factory [J].
Bentley, D .
CURRENT OPINION IN CELL BIOLOGY, 2002, 14 (03) :336-342
[6]   Coupling RNA polymerase II transcription with pre-mRNA processing [J].
Bentley, D .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (03) :347-351
[7]   The DNA methyltransferases of mammals [J].
Bestor, TH .
HUMAN MOLECULAR GENETICS, 2000, 9 (16) :2395-2402
[8]   Conformation of the RNA polymerase IIC-terminal domain: Circular dichroism of long and short fragments [J].
Bienkiewicz, EA ;
Woody, AYM ;
Woody, RW .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 297 (01) :119-133
[9]  
Bird A, 1995, J CELL SCI, P37
[10]   A B-cell-specific DNA recombination complex [J].
Borggrefe, T ;
Wabl, M ;
Akhmedov, AT ;
Jessberger, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (27) :17025-17035