Global asymptotic stability of an SIR epidemic model with distributed time delay

被引:219
作者
Beretta, E
Hara, T
Ma, WB [1 ]
Takeuchi, Y
机构
[1] Shizuoka Univ, Fac Engn, Dept Syst Engn, Hamamatsu, Shizuoka 4328561, Japan
[2] Univ Urbino, Ist Biomatemat, I-61029 Urbino, Italy
[3] Univ Osaka Prefecture, Fac Engn, Dept Math Sci, Sakai, Osaka 5998531, Japan
关键词
SIR epidemic model; distributed time delay; global asymptotic stability; invariance principle; Liapunov functional;
D O I
10.1016/S0362-546X(01)00528-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The SIR epidemic model with distributed time delay that specifies the numbers of the population susceptible to disease was analyzed. The global asymptotic stability of the disease free equilibrium E0 and the endemic equilibrium E+ was considered. The analysis using the Liapunov functional V shows that the endemic equilibrium E+ is feasible and also globally asymptotically stable. Results show that for small time delay the condition gives the threshold for an epidemic to occur.
引用
收藏
页码:4107 / 4115
页数:9
相关论文
共 11 条
[1]   POPULATION BIOLOGY OF INFECTIOUS-DISEASES .1. [J].
ANDERSON, RM ;
MAY, RM .
NATURE, 1979, 280 (5721) :361-367
[2]   GLOBAL STABILITY RESULTS FOR A GENERALIZED LOTKA-VOLTERRA SYSTEM WITH DISTRIBUTED DELAYS - APPLICATIONS TO PREDATOR-PREY AND TO EPIDEMIC SYSTEMS [J].
BERETTA, E ;
CAPASSO, V ;
RINALDI, F .
JOURNAL OF MATHEMATICAL BIOLOGY, 1988, 26 (06) :661-688
[3]   Convergence results in SIR epidemic models with varying population sizes [J].
Beretta, E ;
Takeuchi, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (12) :1909-1921
[4]  
COOKE K. L., 1979, Rocky Mountain Journal of Mathematics, V9, P31, DOI DOI 10.1216/RMJ-1979-9-1-31
[5]  
Hale J. K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[6]   PERSISTENCE IN INFINITE-DIMENSIONAL SYSTEMS [J].
HALE, JK ;
WALTMAN, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) :388-395
[7]  
HETHCOTE H W, 1976, Mathematical Biosciences, V28, P335, DOI 10.1016/0025-5564(76)90132-2
[8]  
Kuang Y, 1993, Mathematics in Science and Engineering
[9]  
MA W, 2000, PERMANENCE SIR EPIDE
[10]   Global asymptotic properties of a delay SIR epidemic model with finite incubation times [J].
Takeuchi, Y ;
Ma, WB ;
Beretta, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (06) :931-947