Lucas-Kanade 20 years on: A unifying framework

被引:2129
作者
Baker, S [1 ]
Matthews, I [1 ]
机构
[1] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
关键词
image alignment; Lucas-Kanade; a unifying framework; additive vs. compositional algorithms; forwards vs. inverse algorithms; the inverse compositional algorithm; efficiency; steepest descent; Gauss-Newton; Newton; Levenberg-Marquardt;
D O I
10.1023/B:VISI.0000011205.11775.fd
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Since the Lucas-Kanade algorithm was proposed in 1981 image alignment has become one of the most widely used techniques in computer vision. Applications range from optical flow and tracking to layered motion, mosaic construction, and face coding. Numerous algorithms have been proposed and a wide variety of extensions have been made to the original formulation. We present an overview of image alignment, describing most of the algorithms and their extensions in a consistent framework. We concentrate on the inverse compositional algorithm, an efficient algorithm that we recently proposed. We examine which of the extensions to Lucas-Kanade can be used with the inverse compositional algorithm without any significant loss of efficiency, and which cannot. In this paper, Part 1 in a series of papers, we cover the quantity approximated, the warp update rule, and the gradient descent approximation. In future papers, we will cover the choice of the error function, how to allow linear appearance variation, and how to impose priors on the parameters.
引用
收藏
页码:221 / 255
页数:35
相关论文
共 17 条
[1]  
[Anonymous], 2000, INT J COMPUT VIS
[2]  
[Anonymous], P EUR C COMP VIS ECC
[3]  
Baker S, 2001, PROC CVPR IEEE, P1090
[4]  
Baker S, 2000, PROC CVPR IEEE, P372, DOI 10.1109/CVPR.2000.854852
[5]  
Baker S, 2002, CMURITR0216
[6]   Third sex, third gender: Beyond sexual dimorphism in culture and history. [J].
Blackwood, E .
JOURNAL OF HOMOSEXUALITY, 1998, 36 (01) :101-104
[7]   Consistent image registration [J].
Christensen, GE ;
Johnson, HJ .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (07) :568-582
[8]  
Cootes T., 1998, Proc. ECCV, V2, P484
[9]  
DELLAERT F, 1969, P ICCV WORKSH FRAM R, P1
[10]  
Gill P.E., 1986, PRACTICAL OPTIMIZATI