Spatial Patterns of Modeled Climate Feedback and Contributions to Temperature Response and Polar Amplification

被引:110
作者
Crook, Julia A. [1 ]
Forster, Piers M. [1 ]
Stuber, Nicola [2 ]
机构
[1] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Reading, Dept Meteorol, Reading, Berks, England
关键词
GENERAL-CIRCULATION MODELS; GREENHOUSE-PLUS FEEDBACK; SURFACE ALBEDO FEEDBACK; PART I; SENSITIVITY; FORCINGS;
D O I
10.1175/2011JCLI3863.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Spatial patterns of local climate feedback and equilibrium partial temperature responses are produced from eight general circulation models with slab oceans forced by doubling carbon dioxide (CO2). The analysis is extended to other forcing mechanisms with the Met Office Hadley Centre slab ocean climate model version 3 (HadSM3). In agreement with previous studies, the greatest intermodel differences are in the tropical cloud feedbacks. However, the greatest intermodel spread in the equilibrium temperature response comes from the water vapor plus lapse rate feedback, not clouds, disagreeing with a previous study. Although the surface albedo feedback contributes most in the annual mean to the greater warming of high latitudes, compared to the tropics (polar amplification), its effect is significantly ameliorated by shortwave cloud feedback. In different seasons the relative importance of the contributions varies considerably, with longwave cloudy-sky feedback and horizontal heat transport plus ocean heat release playing a major role during winter and autumn when polar amplification is greatest. The greatest intermodel spread in annual mean polar amplification is due to variations in horizontal heat transport and shortwave cloud feedback. Spatial patterns of local climate feedback for HadSM3 forced with 2 x CO2, +2% solar, low-level scattering aerosol and high-level absorbing aerosol are more similar than those for different models forced with 2 x CO2. However, the equilibrium temperature response to high-level absorbing aerosol shows considerably enhanced polar amplification compared to the other forcing mechanisms, largely due to differences in horizontal heat transport and water vapor plus lapse rate feedback, with the forcing itself acting to reduce amplification. Such variations in high-latitude response between models and forcing mechanisms make it difficult to infer specific causes of recent Arctic temperature change.
引用
收藏
页码:3575 / 3592
页数:18
相关论文
共 41 条
[1]   Polar amplification of surface warming on an aquaplanet in "ghost forcing" experiments without sea ice feedbacks [J].
Alexeev, VA ;
Langen, PL ;
Bates, JR .
CLIMATE DYNAMICS, 2005, 24 (7-8) :655-666
[2]   CO2 forcing induces semi-direct effects with consequences for climate feedback interpretations [J].
Andrews, Timothy ;
Forster, Piers M. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (04)
[3]   Climate sensitivity and response [J].
Boer, GJ ;
Yu, B .
CLIMATE DYNAMICS, 2003, 20 (04) :415-429
[4]   How well do we understand and evaluate climate change feedback processes? [J].
Bony, Sandrine ;
Colman, Robert ;
Kattsov, Vladimir M. ;
Allan, Richard P. ;
Bretherton, Christopher S. ;
Dufresne, Jean-Louis ;
Hall, Alex ;
Hallegatte, Stephane ;
Holland, Marika M. ;
Ingram, William ;
Randall, David A. ;
Soden, Brian J. ;
Tselioudis, George ;
Webb, Mark J. .
JOURNAL OF CLIMATE, 2006, 19 (15) :3445-3482
[5]   Dynamical greenhouse-plus feedback and polar warming amplification. Part I: A dry radiative-transportive climate model [J].
Cai, M .
CLIMATE DYNAMICS, 2006, 26 (7-8) :661-675
[6]   Dynamical greenhouse-plus feedback and polar warming amplification. Part II: meridional and vertical asymmetries of the global warming [J].
Cai, Ming ;
Lu, Jianhua .
CLIMATE DYNAMICS, 2007, 29 (04) :375-391
[7]   Cloud feedback in atmospheric general circulation models: An update [J].
Cess, RD ;
Zhang, MH ;
Ingram, WJ ;
Potter, GL ;
Alskseev, V ;
Barker, HW ;
Cohen-Solal, E ;
Colman, RA ;
Dazlich, DA ;
Del Genio, AD ;
Dix, MR ;
Dymnikov, V ;
Esch, M ;
Fowler, LD ;
Fraser, JR ;
Galin, V ;
Gates, WL ;
Hack, JJ ;
Kiehl, JT ;
Le Treut, H ;
Lo, KKW ;
McAvaney, BJ ;
Meleshko, VP ;
Morcrette, JJ ;
Randall, DA ;
Roeckner, E ;
Royer, JF ;
Schlesinger, ME ;
Sporyshev, PV ;
Timbal, B ;
Volodin, EM ;
Taylor, KE ;
Wang, W ;
Wetherald, RT .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D8) :12791-12794
[8]   INTERCOMPARISON AND INTERPRETATION OF CLIMATE FEEDBACK PROCESSES IN 19 ATMOSPHERIC GENERAL-CIRCULATION MODELS [J].
CESS, RD ;
POTTER, GL ;
BLANCHET, JP ;
BOER, GJ ;
DELGENIO, AD ;
DEQUE, M ;
DYMNIKOV, V ;
GALIN, V ;
GATES, WL ;
GHAN, SJ ;
KIEHL, JT ;
LACIS, AA ;
LETREUT, H ;
LI, ZX ;
LIANG, XZ ;
MCAVANEY, BJ ;
MELESHKO, VP ;
MITCHELL, JFB ;
MORCRETTE, JJ ;
RANDALL, DA ;
RIKUS, L ;
ROECKNER, E ;
ROYER, JF ;
SCHLESE, U ;
SHEININ, DA ;
SLINGO, A ;
SOKOLOV, AP ;
TAYLOR, KE ;
WASHINGTON, WM ;
WETHERALD, RT ;
YAGAI, I ;
ZHANG, MH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D10) :16601-16615
[9]   Geographical contributions to global climate sensitivity in a General Circulation Model [J].
Colman, R .
GLOBAL AND PLANETARY CHANGE, 2002, 32 (2-3) :211-243
[10]   A comparison of climate feedbacks in general circulation models [J].
Colman, R .
CLIMATE DYNAMICS, 2003, 20 (7-8) :865-873