A semiparametric two-step estimator in a multivariate long memory model

被引:70
作者
Lobato, IN [1 ]
机构
[1] ITAM, Ctr Invest Econ, Mexico City 10700, DF, Mexico
关键词
long memory series; semiparametric estimation; Gaussian estimation;
D O I
10.1016/S0304-4076(98)00038-4
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper analyzes a two-step estimator of the long memory parameters of a vector process. The objective function considered is a semiparametric version of the multivariate Gaussian likelihood function in the frequency domain. In our context, semiparametric refers to the fact that only periodogram ordinates evaluated in a degenerating neighborhood of zero frequency are employed in the estimation procedure. Asymptotic normality is established under mild conditions that do not include Gaussianity. Furthermore, the simplicity of the form of the covariance matrix of the estimates facilitates statistical inference. We include an application of these estimates to exchange rate data. (C) 1999 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:129 / 153
页数:25
相关论文
共 29 条
[1]  
Amemiya Takeshi., 1985, Advanced Econometrics
[2]   Fractionally integrated generalized autoregressive conditional heteroskedasticity [J].
Baillie, RT ;
Bollerslev, T ;
Mikkelsen, HO .
JOURNAL OF ECONOMETRICS, 1996, 74 (01) :3-30
[3]   Modeling and pricing long memory in stock market volatility [J].
Bollerslev, T ;
Mikkelsen, HO .
JOURNAL OF ECONOMETRICS, 1996, 73 (01) :151-184
[4]  
Brillinger DR., 1975, TIME SERIES DATA ANA
[5]   EFFICIENT PARAMETER-ESTIMATION FOR SELF-SIMILAR PROCESSES [J].
DAHLHAUS, R .
ANNALS OF STATISTICS, 1989, 17 (04) :1749-1766
[6]   VECTOR LINEAR TIME SERIES MODELS [J].
DUNSMUIR, W ;
HANNAN, EJ .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (02) :339-364
[7]   LARGE-SAMPLE PROPERTIES OF PARAMETER ESTIMATES FOR STRONGLY DEPENDENT STATIONARY GAUSSIAN TIME-SERIES [J].
FOX, R ;
TAQQU, MS .
ANNALS OF STATISTICS, 1986, 14 (02) :517-532
[8]  
Geweke J., 1983, J TIME SER ANAL, V4, P221, DOI DOI 10.1111/J.1467-9892.1983.TB00371.X
[9]  
GHYSELS E, 1996, HANDB STAT, V14, P119
[10]  
GIRIATIS L, 1990, PROBABILITY THEORY R, V86, P87