A fourth-order numerical integrator for stochastic Langevin equations

被引:44
作者
Hershkovitz, E [1 ]
机构
[1] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
关键词
D O I
10.1063/1.476380
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Stochastic differential equations (SDE's) can be numerically integrated using second-order accuracy methods. Higher order schemes are not in use because of the complexity of the algorithm and because of the difficulties in producing non-Gaussian noises. Yet for the case of the Langevin equation (LE) which is a subclass of SDE's, high order integrators can be developed. A fast fourth-order integrator is presented here. The improved efficiency of the new integrator allows for solution of systems which could not be integrated accurately with the standard second-order methods. (C) 1998 American Institute of Physics. [S0021-9606(98)01821-2].
引用
收藏
页码:9253 / 9258
页数:6
相关论文
共 24 条
[1]  
[Anonymous], 1981, STOCHASTIC NONLINEAR
[2]   Path integral solution of the Kramers problem [J].
Drozdov, AN ;
Morillo, M .
PHYSICAL REVIEW LETTERS, 1996, 77 (27) :5324-5327
[3]  
GRAHAM R, 1975, MACROSCOPIC THEORY F, P215
[4]   NUMERICAL-INTEGRATION OF STOCHASTIC DIFFERENTIAL-EQUATIONS .2. [J].
GREENSIDE, HS ;
HELFAND, E .
BELL SYSTEM TECHNICAL JOURNAL, 1981, 60 (08) :1927-1940
[5]   Chaos and noise in a truncated Toda potential [J].
Habib, S ;
Kandrup, HE ;
Mahon, ME .
PHYSICAL REVIEW E, 1996, 53 (05) :5473-5476
[6]  
HANGGI P, 1990, REV MOD PHYS, V62, P251, DOI 10.1103/RevModPhys.62.251
[7]   NUMERICAL-INTEGRATION OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
HELFAND, E .
BELL SYSTEM TECHNICAL JOURNAL, 1979, 58 (10) :2289-2299
[9]   Multidimensional generalization of the Pollak-Grabert-Hanggi turnover theory for activated rate processes [J].
Hershkovitz, E ;
Pollak, E .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (18) :7678-7699
[10]  
Kampen N.G.V., 1984, STOCHASTIC PROCESSES