Doubly penalized Buckley-James method for survival data with high-dimensional covariates

被引:61
作者
Wang, Sijian [1 ]
Nan, Bin [1 ]
Zhu, Ji [2 ]
Beer, David G. [3 ,4 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Surg, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48109 USA
关键词
accelerated failure time model; Buckley-James method; censored survival data; elastic net; high-dimensional covariate; lung cancer; microarray analysis; variable selection;
D O I
10.1111/j.1541-0420.2007.00877.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent interest in cancer research focuses on predicting patients' survival by investigating gene expression profiles based on microarray analysis. We propose a doubly penalized Buckley-James method for the serniparametric accelerated failure time model to relate high-dimensional genomic data to censored survival outcomes, which uses the elastic-net penalty that is a mixture of L-1- and L-2-norm penalties. Similar to the elastic-net method for a linear regression model with uncensored data, the proposed method performs automatic gene selection and parameter estimation, where highly correlated genes are able to be selected (or removed) together. The two-dimensional tuning parameter is determined by generalized crossvalidation. The proposed method is evaluated by simulations and applied to the Michigan squamous cell lung carcinoma study.
引用
收藏
页码:132 / 140
页数:9
相关论文
共 41 条
[1]   Gene-expression profiles predict survival of patients with lung adenocarcinoma [J].
Beer, DG ;
Kardia, SLR ;
Huang, CC ;
Giordano, TJ ;
Levin, AM ;
Misek, DE ;
Lin, L ;
Chen, GA ;
Gharib, TG ;
Thomas, DG ;
Lizyness, ML ;
Kuick, R ;
Hayasaka, S ;
Taylor, JMG ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, S .
NATURE MEDICINE, 2002, 8 (08) :816-824
[2]  
BUCKLEY J, 1979, BIOMETRIKA, V66, P429
[3]  
COX DR, 1972, J R STAT SOC B, V34, P187
[4]   Levels of mesenchymal FGFR2 signaling modulate smooth muscle progenitor cell commitment in the lung [J].
De langhe, Stijn P. ;
Carraro, Gianni ;
Warburton, David ;
Hajihosseini, Mohammad K. ;
Bellusci, Saverio .
DEVELOPMENTAL BIOLOGY, 2006, 299 (01) :52-62
[5]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[6]  
Fang K.T., 1994, NUMBER THEORETIC MET
[7]  
Gharib Tarek G, 2004, Clin Lung Cancer, V5, P307, DOI 10.3816/CLC.2004.n.011
[8]   Proteomic analysis of cytokeratin isoforms uncovers association with survival in lung adenocarcinoma [J].
Gharib, TG ;
Chen, GA ;
Wang, H ;
Huang, CC ;
Prescott, MS ;
Shedden, K ;
Misek, DE ;
Thomas, DG ;
Giordano, TJ ;
Taylor, JMG ;
Kardia, S ;
Yee, J ;
Orringer, MB ;
Hanash, S ;
Beer, DG .
NEOPLASIA, 2002, 4 (05) :440-448
[9]   Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data [J].
Gui, J ;
Li, HZ .
BIOINFORMATICS, 2005, 21 (13) :3001-3008
[10]   A COMPARISON OF ESTIMATORS FOR REGRESSION WITH A CENSORED RESPONSE VARIABLE [J].
HELLER, G ;
SIMONOFF, JS .
BIOMETRIKA, 1990, 77 (03) :515-520