Prolonged enhancement and depression of synaptic transmission in CA1 pyramidal neurons induced by transient forebrain ischemia in vivo

被引:37
作者
Gao, TM
Pulsinelli, WA
Xu, ZC [1 ]
机构
[1] Univ Tennessee, Dept Neurol, Memphis, TN 38163 USA
[2] First Mil Med Univ, Dept Physiol, Guangzhou, Peoples R China
关键词
ischemia; hippocampus; long-term potentiation; long-term depression; excitotoxicity; in vivo intracellular recording;
D O I
10.1016/S0306-4522(98)00150-X
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Evoked postsynaptic potentials of CA1 pyramidal neurons in rat hippocampus were studied during 48 h after severe ischemic insult using in vivo intracellular recording and staining techniques. Postischemic CA1 neurons displayed one of three distinct response patterns following contralateral commissural stimulation. At early recirculation times (0-12 h) approximately 50% of neurons exhibited, in addition to the initial excitatory postsynaptic potential, a late depolarizing postsynaptic potential lasting for more than 100 ms. Application of dizocilpine maleate reduced the amplitude of late depolarizing postsynaptic potential by 60%. Other CA1 neurons recorded in this interval failed to develop late depolarizing postsynaptic potentials but showed a modest blunting of initial excitatory postsynaptic potentials (non-late depolarizing postsynaptic potential neuron). The proportion of recorded neurons with late depolarizing postsynaptic potential characteristics increased to more than 70% during 13-24 h after reperfusion. Beyond 24 h reperfusion, similar to 20% of CA1 neurons exhibited very small excitatory postsynaptic potentials even with maximal stimulus intensity. The slope of the initial excitatory postsynaptic potentials in late depolarizing postsynaptic potential neurons increased to similar to 150% of control values up to 12 h after reperfusion indicating a prolonged enhancement of synaptic transmission. In contrast, the slope of the initial excitatory postsynaptic potentials in non-late depolarizing postsynaptic potential neurons decreased to less than 50% of preischemic values up to 24 h after reperfusion indicating a prolonged depression of synaptic transmission. More late depolarizing postsynaptic potential neurons were located in the medial portion of CA1 zone where neurons are more vulnerable to ischemia whereas more non-late depolarizing postsynaptic potential neurons were located in the lateral portion of CA1 zone where neurons are more resistant to ischemia. The result from the present study suggests that late depolarizing postsynaptic potential and small excitatory postsynaptic potential neurons may be irreversibly injured while non-late depolarizing postsynaptic potential neurons may be those that survive the ischemic insult. Alterations of synaptic transmission may be associated with the pathogenesis of postischemic neuronal injury. (C) 1998 IBRO. Published by Elsevier Science Ltd.
引用
收藏
页码:371 / 383
页数:13
相关论文
共 82 条
[1]   ENHANCED CALCIUM-UPTAKE BY CA1 PYRAMIDAL CELL DENDRITES IN THE POSTISCHEMIC PHASE DESPITE SUBNORMAL EVOKED FIELD POTENTIALS - EXCITATORY AMINO-ACID RECEPTOR DEPENDENCY AND RELATIONSHIP TO NEURONAL DAMAGE [J].
ANDINE, P ;
JACOBSON, I ;
HAGBERG, H .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1992, 12 (05) :773-783
[2]   LONG-TERM DEPRESSION OF EXCITATORY SYNAPTIC TRANSMISSION AND ITS RELATIONSHIP TO LONG-TERM POTENTIATION [J].
ARTOLA, A ;
SINGER, W .
TRENDS IN NEUROSCIENCES, 1993, 16 (11) :480-487
[3]   BURSTING RESPONSE TO CURRENT-EVOKED DEPOLARIZATION IN RAT CA1 PYRAMIDAL NEURONS IS CORRELATED WITH LUCIFER YELLOW-DYE COUPLING BUT NOT WITH THE PRESENCE OF CALBINDIN-D28K [J].
BAIMBRIDGE, KG ;
PEET, MJ ;
MCLENNAN, H ;
CHURCH, J .
SYNAPSE, 1991, 7 (04) :269-277
[4]   SPREADING DEPRESSION-LIKE HYPOXIC DEPOLARIZATION IN CA1 AND FASCIA DENTATA OF HIPPOCAMPAL SLICES - RELATIONSHIP TO SELECTIVE VULNERABILITY [J].
BALESTRINO, M ;
AITKEN, PG ;
SOMJEN, GG .
BRAIN RESEARCH, 1989, 497 (01) :102-107
[5]  
Bear Mark F., 1994, Current Opinion in Neurobiology, V4, P389, DOI 10.1016/0959-4388(94)90101-5
[6]   ELEVATION OF THE EXTRACELLULAR CONCENTRATIONS OF GLUTAMATE AND ASPARTATE IN RAT HIPPOCAMPUS DURING TRANSIENT CEREBRAL-ISCHEMIA MONITORED BY INTRACEREBRAL MICRODIALYSIS [J].
BENVENISTE, H ;
DREJER, J ;
SCHOUSBOE, A ;
DIEMER, NH .
JOURNAL OF NEUROCHEMISTRY, 1984, 43 (05) :1369-1374
[7]  
BUCHAN A, 1991, J NEUROSCI, V11, P1049
[8]   BLOCKADE OF THE AMPA RECEPTOR PREVENTS CA1 HIPPOCAMPAL INJURY FOLLOWING SEVERE BUT TRANSIENT FOREBRAIN ISCHEMIA IN ADULT-RATS [J].
BUCHAN, AM ;
LI, H ;
CHO, S ;
PULSINELLI, WA .
NEUROSCIENCE LETTERS, 1991, 132 (02) :255-258
[9]  
BUZSAKI G, 1989, EXP BRAIN RES, V78, P268
[10]   HIPPOCAMPAL UNIT-ACTIVITY AFTER TRANSIENT CEREBRAL-ISCHEMIA IN RATS [J].
CHANG, HS ;
SASAKI, T ;
KASSELL, NF .
STROKE, 1989, 20 (08) :1051-1058