Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion

被引:321
作者
Chen, M
He, HP
Zhan, SX
Krajewski, S
Reed, JC
Gottlieb, RA
机构
[1] Scripps Res Inst, MEM220, La Jolla, CA 92037 USA
[2] Burnham Inst, La Jolla, CA 92037 USA
关键词
D O I
10.1074/jbc.M103701200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reperfusion after myocardial ischemia is associated with a rapid influx of calcium, leading to activation of various enzymes including calpain. Isolated perfused adult rabbit hearts subjected to global ischemia and reperfusion were studied. Calpain or a calpain-like activity was activated within 15 min after reperfusion, and preconditioning suppressed calpain activation. In contrast, caspase activation was not detected although cytochrome c was released after ischemia and reperfusion. The pro-apoptotic BH3-only Bcl-2 family member, Bid, was cleaved during ischemia/reperfusion in the adult rabbit heart. Recombinant Bid was cleaved by calpain to a fragment that was able to mediate cytochrome c release. The calpain cleavage site was mapped to a region within Bid that is extremely susceptible to proteolysis. These findings suggest that there is cross-talk between apoptotic and necrotic pathways in myocardial ischemia/reperfusion injury.
引用
收藏
页码:30724 / 30728
页数:5
相关论文
共 40 条
[1]   The mitochondrial apoptotic pathway is activated by serum and glucose deprivation in cardiac myocytes [J].
Bialik, S ;
Cryns, VL ;
Drincic, A ;
Miyata, S ;
Wollowick, AL ;
Srinivasan, A ;
Kitsis, RN .
CIRCULATION RESEARCH, 1999, 85 (05) :403-414
[2]   Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53 [J].
Bialik, S ;
Geenen, DL ;
Sasson, IE ;
Cheng, R ;
Horner, JW ;
Evans, SM ;
Lord, EM ;
Koch, CJ ;
Kitsis, RN .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (06) :1363-1372
[3]   Co-localization of the cysteine protease caspase-3 with apoptotic myocytes after in vivo myocardial ischemia and reperfusion in the rat [J].
Black, SC ;
Huang, JQ ;
Rezaiefar, P ;
Radinovic, S ;
Eberhart, A ;
Nicholson, DW ;
Rodger, IW .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1998, 30 (04) :733-742
[4]   Control and kinetic analysis of ischemia-damaged heart mitochondria: Which parts of the oxidative phosphorylation system are affected by ischemia? [J].
Borutaite, V ;
Mildaziene, V ;
Brown, GC ;
Brand, MD .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 1995, 1272 (03) :154-158
[5]   Mitochondria localization and dimerization are required for CIDE-B to induce apoptosis [J].
Chen, ZM ;
Guo, K ;
Toh, SY ;
Zhou, ZH ;
Li, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (30) :22619-22622
[6]   Caspase activation and mitochondrial cytochrome c release during hypoxia-mediated apoptosis of adult ventricular myocytes [J].
de Moissac, D ;
Gurevich, RM ;
Zheng, H ;
Singal, PK ;
Kirshenbaum, LA .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2000, 32 (01) :53-63
[7]   Mitochondrial function as a determinant of recovery or death in cell response to injury [J].
Di Lisa, F ;
Bernardi, P .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 1998, 184 (1-2) :379-391
[8]   Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart [J].
Di Lisa, F ;
Menabò, R ;
Canton, M ;
Barile, M ;
Bernardi, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (04) :2571-2575
[9]   Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition [J].
Du, CY ;
Fang, M ;
Li, YC ;
Li, L ;
Wang, XD .
CELL, 2000, 102 (01) :33-42
[10]  
DUAN JM, 1989, MOL CELL BIOCHEM, V90, P47