The adaptive multilevel finite element solution of the Poisson-Boltzmann equation on massively parallel computers

被引:89
作者
Baker, NA
Sept, D
Holst, MJ
McCammon, JA
机构
[1] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[3] Washington Univ, Dept Biomed Engn, St Louis, MO 63130 USA
[4] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
关键词
D O I
10.1147/rd.453.0427
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
By using new methods for the parallel solution of elliptic partial differential equations, the teraflops computing power of massively parallel computers can be leveraged to perform electrostatic calculations on large biological systems. This paper describes the adaptive multilevel finite element solution of the Poisson-Boltzmann equation for a microtubule on the NPACI Blue Horizon - a massively parallel IBM RS/6000 (R) SID with eight POWER3 SMP nodes. The microtubule system is 40 nm in length and 24 nm in diameter, consists of roughly 600000 atoms, and has a net charge of -1800 e. Poisson-Boltzmann calculations are performed for several processor configurations, and the algorithm used shows excellent parallel scaling.
引用
收藏
页码:427 / 438
页数:12
相关论文
共 34 条
[1]  
Alberts B., 1994, MOL BIOL CELL
[2]  
[Anonymous], 1997, THEORY FAST SOLVERS
[3]  
Axelsson O., 1984, Finite Element Solution of Boundary Value Problems: Theory and Computation
[4]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[5]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[6]  
Baker N, 2000, J COMPUT CHEM, V21, P1343, DOI 10.1002/1096-987X(20001130)21:15<1343::AID-JCC2>3.0.CO
[7]  
2-K
[8]   THE HIERARCHICAL BASIS MULTIGRID METHOD [J].
BANK, RE ;
DUPONT, TF ;
YSERENTANT, H .
NUMERISCHE MATHEMATIK, 1988, 52 (04) :427-458
[9]   GLOBAL APPROXIMATE NEWTON METHODS [J].
BANK, RE ;
ROSE, DJ .
NUMERISCHE MATHEMATIK, 1981, 37 (02) :279-295
[10]  
BANK RE, 1982, MATH COMPUT, V39, P453, DOI 10.1090/S0025-5718-1982-0669639-X