Atg17 regulates the magnitude of the autophagic response

被引:190
作者
Cheong, H
Yorimitsu, T
Reggiori, F
Legakis, JE
Wang, CW
Klionsky, DJ [1 ]
机构
[1] Univ Michigan, Inst Life Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Mol Cellular & Dev Biol, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
关键词
D O I
10.1091/mbc.E04-10-0894
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Autophagy is a catabolic process used by eukaryotic cells for the degradation and recycling of cytosolic proteins and excess or defective organelles. In yeast, autophagy is primarily a response to nutrient limitation, whereas in higher eukaryotes it also plays a role in developmental processes. Due to its essentially unlimited degradative capacity, it is critical that regulatory mechanisms are in place to modulate the timing and magnitude of the autophagic response. One set of proteins that seems to function in this regard includes a complex that contains the Atg1 kinase. Aside from Atg1, the proteins in this complex participate primarily in either nonspecific autophagy or specific types of autophagy, including the cytoplasm to vacuole targeting pathway, which operates under vegetative growth conditions, and peroxisome degradation. Accordingly, these proteins are prime candidates for factors that regulate the conversion between these pathways, including the change in size of the sequestering vesicle, the most obvious morphological difference. The atg17 mutant forms a reduced number of small autophagosomes. As a result, it is defective in peroxisome degradation and is partially defective for autophagy. Atg17 interacts with both Atg1 and Atg13, via two coiled-coil domains, and these interactions facilitate its inclusion in the Atg1 complex.
引用
收藏
页码:3438 / 3453
页数:16
相关论文
共 62 条
[1]   Chemical genetic analysis of Apg1 reveals a nonkinase role in the induction of autophagy [J].
Abeliovich, H ;
Zhang, C ;
Dunn, WA ;
Shokat, KM ;
Klionsky, DJ .
MOLECULAR BIOLOGY OF THE CELL, 2003, 14 (02) :477-490
[2]   Dissection of autophagosome biogenesis into distinct nucleation and expansion steps [J].
Abeliovich, H ;
Dunn, WA ;
Kim, J ;
Klionsky, DJ .
JOURNAL OF CELL BIOLOGY, 2000, 151 (05) :1025-1033
[3]   Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome [J].
Baba, M ;
Osumi, M ;
Scott, SV ;
Klionsky, DJ ;
Ohsumi, Y .
JOURNAL OF CELL BIOLOGY, 1997, 139 (07) :1687-1695
[4]   ULTRASTRUCTURAL ANALYSIS OF THE AUTOPHAGIC PROCESS IN YEAST - DETECTION OF AUTOPHAGOSOMES AND THEIR CHARACTERIZATION [J].
BABA, M ;
TAKESHIGE, K ;
BABA, N ;
OHSUMI, Y .
JOURNAL OF CELL BIOLOGY, 1994, 124 (06) :903-913
[5]   The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function [J].
Babst, M ;
Wendland, B ;
Estepa, EJ ;
Emr, SD .
EMBO JOURNAL, 1998, 17 (11) :2982-2993
[6]   The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae [J].
Budovskaya, YV ;
Stephan, JS ;
Reggiori, F ;
Klionsky, DJ ;
Herman, PK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (20) :20663-20671
[7]   Autophagy: in sickness and in health [J].
Cuervo, AM .
TRENDS IN CELL BIOLOGY, 2004, 14 (02) :70-77
[8]   STUDIES ON THE MECHANISMS OF AUTOPHAGY - FORMATION OF THE AUTOPHAGIC VACUOLE [J].
DUNN, WA .
JOURNAL OF CELL BIOLOGY, 1990, 110 (06) :1923-1933
[9]   Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae [J].
Funakoshi, T ;
Matsuura, A ;
Noda, T ;
Ohsumi, Y .
GENE, 1997, 192 (02) :207-213
[10]   ISOLATION AND CHARACTERIZATION OF YEAST MUTANTS IN THE CYTOPLASM TO VACUOLE PROTEIN TARGETING PATHWAY [J].
HARDING, TM ;
MORANO, KA ;
SCOTT, SV ;
KLIONSKY, DJ .
JOURNAL OF CELL BIOLOGY, 1995, 131 (03) :591-602