Analysis of dynamic spectra in ferret primary auditory cortex .2. Prediction of unit responses to arbitrary dynamic spectra

被引:95
作者
Kowalski, N
Depireux, DA
Shamma, SA
机构
[1] UNIV MARYLAND, SYST RES INST, COLLEGE PK, MD 20742 USA
[2] UNIV MARYLAND, DEPT ELECT ENGN, COLLEGE PK, MD 20742 USA
关键词
D O I
10.1152/jn.1996.76.5.3524
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
I, Responses of single units and multiunit clusters were recorded in the ferret primary auditory cortex (AI) with the use of broadband complex dynamic spectra. Previous work has demonstrated that simpler spectra consisting of single moving ripples (i.e,, sinusoidally modulated spectral profiles that travel at a constant velocity along the logarithmic frequency axis) could be used effectively to characterize the response fields and transfer functions of Al cells. 2. A complex dynamic spectral profile can be thought of as being the sum of moving ripple spectra. Such a decomposition can be computed from a two-dimensional spectrotemporal Fourier transform of the dynamic spectral profile with moving ripples as the basis function, 3. Therefore, if Al units were essentially linear, satisfying the superposition principle, then their responses to arbitrary dynamic spectra could be predicted From the responses to single moving ripples, i.e., from the units- response fields and transfer functions (spectral and temporal impulse response functions, respectively). 4. This conjecture was tested and confirmed with data from 293 combinations of moving ripples, involving complex spectra composed of up to 15 moving ripples of different ripple frequencies and velocities. For each case, response predictions based on the unit transfer functions were compared with measured responses. The correlation between predicted and measured responses was found to be consistently high (84% with rho > 0.6). 5. The distribution of response parameters suggests that Al cells may encode the profile of a dynamic spectrum by performing a multiscale spectrotemporal decomposition of the dynamic spectral profile in a largely linear manner.
引用
收藏
页码:3524 / 3534
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 1995, AUDIT NEUROSCI
[2]   STIMULUS INDUCED AND SPONTANEOUS RHYTHMIC FIRING OF SINGLE UNITS IN CAT PRIMARY AUDITORY-CORTEX [J].
EGGERMONT, JJ .
HEARING RESEARCH, 1992, 61 (1-2) :1-11
[3]   TEMPORAL-MODULATION TRANSFER-FUNCTIONS FOR AM AND FM STIMULI IN CAT AUDITORY-CORTEX - EFFECTS OF CARRIER TYPE, MODULATING WAVE-FORM AND INTENSITY [J].
EGGERMONT, JJ .
HEARING RESEARCH, 1994, 74 (1-2) :51-66
[4]  
Julesz B., 1972, Human communication: a unified view, P283
[5]   Analysis of dynamic spectra in ferret primary auditory cortex .1. Characteristics of single-unit responses to moving ripple spectra [J].
Kowalski, N ;
Depireux, DA ;
Shamma, SA .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 76 (05) :3503-3523
[6]   POPULATION RESPONSES TO MULTIFREQUENCY SOUNDS IN THE CAT AUDITORY-CORTEX - ONE-PARAMETER AND 2-PARAMETER FAMILIES OF SOUNDS [J].
NELKEN, I ;
PRUT, Y ;
VAADIA, E ;
ABELES, M .
HEARING RESEARCH, 1994, 72 (1-2) :206-222
[7]  
Rabiner LR., 1978, DIGITAL PROCESSING S
[8]   CORTICAL CODING OF REPETITIVE ACOUSTIC PULSES [J].
RIBAUPIERRE, FD ;
GOLDSTEI.MH ;
YENIKOMS.G .
BRAIN RESEARCH, 1972, 48 (DEC24) :205-225
[9]   ORGANIZATION OF RESPONSE AREAS IN FERRET PRIMARY AUDITORY-CORTEX [J].
SHAMMA, SA ;
FLESHMAN, JW ;
WISER, PR ;
VERSNEL, H .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 69 (02) :367-383
[10]  
Shamma SA, 1995, Audit Neurosci, V1, P233