Epidemic thresholds on scale-free graphs:: The interplay between exponent and preferential choice

被引:5
作者
Blanchard, P
Chang, CH
Krüger, T
机构
[1] Univ Bielefeld, Fak Phys, D-33619 Bielefeld, Germany
[2] Natl Tsing Hua Univ, Div Phys, Natl Ctr Theoret Sci, Hsinchu 300, Taiwan
[3] Univ Bielefeld, Fak Math, D-33619 Bielefeld, Germany
来源
ANNALES HENRI POINCARE | 2003年 / 4卷 / Suppl 2期
关键词
D O I
10.1007/s00023-003-0975-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study epidemic threshold properties in a scale-free random graph model. We show via a branching process approximation that the divergence of the second moment of the degree distribution equivalent to the absence of an epidemic threshold. We study further the relation between diameter and epidemic threshold. Absence of an epidemic threshold happens precisely when a positive fraction of the nodes form a cluster of bounded diameter.
引用
收藏
页码:S957 / S970
页数:14
相关论文
共 11 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[3]  
Bak P., 1996, NATURE WORKS
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]  
BLANCHARD P, 1990, LECT NOTES BIOMATHEM, V86
[6]  
BLANCHARD P, 2002, EPIDEMIC THRESHOLDS
[7]   The degree sequence of a scale-free random graph process [J].
Bollobás, B ;
Riordan, O ;
Spencer, J ;
Tusnády, G .
RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (03) :279-290
[8]  
DESZO Z, CONDMAT0107430V2
[9]   Epidemic spreading in scale-free networks [J].
Pastor-Satorras, R ;
Vespignani, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :3200-3203
[10]  
VOLCHENKOV D, 2003, IN PRESS PHYS A