Topological mirror symmetry

被引:56
作者
Gross, M [1 ]
机构
[1] Univ Warwick, Inst Math, Coventry CV4 7AL, W Midlands, England
关键词
Exact Sequence; Vector Bundle; Toric Variety; Chern Class; Monodromy Group;
D O I
10.1007/s002220000119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:75 / 137
页数:63
相关论文
共 21 条
[1]  
[Anonymous], 1993, J AM MATH SOC, DOI [DOI 10.1090/S0894-0347-1993-1179538-2, DOI 10.2307/2152798.MR1179538]
[2]   CALABI-YAU MODULI SPACE, MIRROR MANIFOLDS AND SPACETIME TOPOLOGY CHANGE IN STRING THEORY [J].
ASPINWALL, PS ;
GREENE, BR ;
MORRISON, DR .
NUCLEAR PHYSICS B, 1994, 416 (02) :414-480
[3]  
Batyrev V. V., 1994, J ALGEBRAIC GEOM, V3, P493
[4]  
Bredon G. E., 1997, SHEAF THEORY
[5]  
CHIANG TM, HEPTH9903053
[6]  
DAIS D, 1995, BONNER MATH SCHRIFTE, V279
[7]   Mirror symmetry via 3-tori for a class of Calabi-Yau threefolds [J].
Gross, M ;
Wilson, PMH .
MATHEMATISCHE ANNALEN, 1997, 309 (03) :505-531
[8]  
GROSS M, 1998, ALGEBRAIC GEOMETRY, P156
[9]  
GROSS M, 1999, SPECIAL LAGRANGIAN F, V2, P341
[10]   CALIBRATED GEOMETRIES [J].
HARVEY, R ;
LAWSON, HB .
ACTA MATHEMATICA, 1982, 148 :47-157