From data to noise to data for mixing physics across temperatures with generative artificial intelligence

被引:31
作者
Wang, Yihang [1 ,2 ]
Herron, Lukas [1 ,2 ]
Tiwary, Pratyush [2 ,3 ]
机构
[1] Univ Maryland, Biophys Program, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
关键词
molecular simulations; generative artificial intelligence; enhanced sampling; REPLICA-EXCHANGE; DYNAMICS; RNA;
D O I
10.1073/pnas.2203656119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using simulations or experiments performed at some set of temperatures to learn about the physics or chemistry at some other arbitrary temperature is a problem of immense practical and theoretical relevance. Here we develop a framework based on statistical mechanics and generative artificial intelligence that allows solving this problem. Specifically, we work with denoising diffusion probabilistic models and show how these models in combination with replica exchange molecular dynamics achieve superior sampling of the biomolecular energy landscape at temperatures that were never simulated without assuming any particular slow degrees of freedom. The key idea is to treat the temperature as a fluctuating random variable and not a control parameter as is usually done. This allows us to directly sample from the joint probability distribution in configuration and temperature space. The results here are demonstrated for a chirally symmetric peptide and single-strand RNA undergoing conformational transitions in all-atom water. We demonstrate how we can discover transition states and metastable states that were previously unseen at the temperature of interest and even bypass the need to perform further simulations for a wide range of temperatures. At the same time, any unphysical states are easily identifiable through very low Boltzmann weights. The procedure while shown here for a class of molecular simulations should be more generally applicable to mixing information across simulations and experiments with varying control parameters.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Advancing Drug Discovery through Enhanced Free Energy Calculations [J].
Abel, Robert ;
Wang, Lingle ;
Harder, Edward D. ;
Berne, B. J. ;
Friesner, Richard A. .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (07) :1625-1632
[2]  
Abraham M., 2016, Gromacs reference manual
[3]   Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration [J].
Abrams, Cameron ;
Bussi, Giovanni .
ENTROPY, 2014, 16 (01) :163-199
[4]   Replica exchange with nonequilibrium switches [J].
Ballard, Andrew J. ;
Jarzynski, Christopher .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (30) :12224-12229
[5]   HIV-1 TAR RNA: The target of molecular interactions between the virus and its host [J].
Bannwarth, S ;
Gatignol, A .
CURRENT HIV RESEARCH, 2005, 3 (01) :61-71
[6]   Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields [J].
Bergonzo, Christina ;
Henriksen, Niel M. ;
Roe, Daniel R. ;
Cheatham, Thomas E., III .
RNA, 2015, 21 (09) :1578-1590
[7]   Metadynamics Enhanced Markov Modeling of Protein Dynamics [J].
Biswas, Mithun ;
Lickert, Benjamin ;
Stock, Gerhard .
JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (21) :5508-5514
[8]   Promoting transparency and reproducibility in enhanced molecular simulations [J].
Bonomi, Massimiliano ;
Bussi, Giovanni ;
Camilloni, Carlo ;
Tribello, Gareth A. ;
Banas, Pavel ;
Barducci, Alessandro ;
Bernetti, Mattia ;
Bolhuis, Peter G. ;
Bottaro, Sandro ;
Branduardi, Davide ;
Capelli, Riccardo ;
Carloni, Paolo ;
Ceriotti, Michele ;
Cesari, Andrea ;
Chen, Haochuan ;
Chen, Wei ;
Colizzi, Francesco ;
De, Sandip ;
De La Pierre, Marco ;
Donadio, Davide ;
Drobot, Viktor ;
Ensing, Bernd ;
Ferguson, Andrew L. ;
Filizola, Marta ;
Fraser, James S. ;
Fu, Haohao ;
Gasparotto, Piero ;
Gervasio, Francesco Luigi ;
Giberti, Federico ;
Gil-Ley, Alejandro ;
Giorgino, Toni ;
Heller, Gabriella T. ;
Hocky, Glen M. ;
Iannuzzi, Marcella ;
Invernizzi, Michele ;
Jelfs, Kim E. ;
Jussupow, Alexander ;
Kirilin, Evgeny ;
Laio, Alessandro ;
Limongelli, Vittorio ;
Lindorff-Larsen, Kresten ;
Lohr, Thomas ;
Marinelli, Fabrizio ;
Martin-Samos, Layla ;
Masetti, Matteo ;
Meyer, Ralf ;
Michaelides, Angelos ;
Molteni, Carla ;
Morishita, Tetsuya ;
Nava, Marco .
NATURE METHODS, 2019, 16 (08) :670-673
[9]   Energy transport in peptide helices [J].
Botan, Virgiliu ;
Backus, Ellen H. G. ;
Pfister, Rolf ;
Moretto, Alessandro ;
Crisma, Marco ;
Toniolo, Claudio ;
Nguyen, Phuong H. ;
Stock, Gerhard ;
Hamm, Peter .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (31) :12749-12754
[10]   Accurate sampling using Langevin dynamics [J].
Bussi, Giovanni ;
Parrinello, Michele .
PHYSICAL REVIEW E, 2007, 75 (05)