Labile iron pool: the main determinant of cellular response to oxidative stress

被引:421
作者
Kruszewski, M
机构
[1] Inst Nucl Chem & Technol, Dept Radiobiol & Hlth Protect, PL-03195 Warsaw, Poland
[2] Maria Sklodowska Curie Mem Canc Ctr, Inst Oncol, Dept Expt Hematol, PL-02781 Warsaw, Poland
[3] Maria Sklodowska Curie Mem Canc Ctr, Inst Oncol, Cord Blood Bank, PL-02781 Warsaw, Poland
关键词
oxidative cellular damage; hydrogen peroxide; iron homeostasis;
D O I
10.1016/j.mrfmmm.2003.08.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The trace amounts of "free" iron can catalyse production of a highly toxic hydroxyl radical via Fenton/Haber-Weiss reaction cycle. The critical factor appears to be the availability and abundance of cellular labile iron pool (LIP) that constitutes a crossroad of metabolic pathways of iron-containing compounds and is midway between the cellular need of iron, its uptake and storage. To avoid an excess of harmful "free" iron, the LIP is kept at the lowest sufficient level by transcriptional and posttranscriptional control of the expression of principal proteins involved in iron homeostasis. The putative sources of cellular LIP, its homeostasis and its role in the cellular response to oxidative stress are discussed. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 92
页数:12
相关论文
共 94 条
[1]   A novel mammalian iron-regulated protein involved in intracellular iron metabolism [J].
Abboud, S ;
Haile, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (26) :19906-19912
[2]   Redox reactions of hemoglobin and myoglobin: Biological and toxicological implications [J].
Alayash, AI ;
Patel, RP ;
Cashon, RE .
ANTIOXIDANTS & REDOX SIGNALING, 2001, 3 (02) :313-327
[3]   Iron homeostasis: Insights from genetics and animal models [J].
Andrews, NC .
NATURE REVIEWS GENETICS, 2000, 1 (03) :208-217
[4]  
APPLEGATE LA, 1991, CANCER RES, V51, P974
[5]  
Ballmaier D, 1997, Recent Results Cancer Res, V143, P35
[6]   Intracellular iron, but not copper, plays a critical role in hydrogen peroxide-induced DNA damage [J].
Barbouti, A ;
Doulias, PT ;
Zhu, BZ ;
Frei, B ;
Galaris, D .
FREE RADICAL BIOLOGY AND MEDICINE, 2001, 31 (04) :490-498
[7]   Iron-sulfur proteins: ancient structures, still full of surprises [J].
Beinert, H .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 2000, 5 (01) :2-15
[8]   Human cytoplasmic aconitase (iron regulatory protein 1) is converted into its [3Fe-4S] form by hydrogen peroxide in vitro but is not activated for iron-responsive element binding [J].
Brazzolotto, X ;
Gaillard, J ;
Pantopoulos, K ;
Hentze, MW ;
Moulis, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (31) :21625-21630
[9]   TRANSPORT OF IRON AND OTHER TRANSITION-METALS INTO CELLS AS REVEALED BY A FLUORESCENT-PROBE [J].
BREUER, W ;
EPSZTEJN, S ;
MILLGRAM, P ;
CABANTCHIK, IZ .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1995, 268 (06) :C1354-C1361
[10]   IRON ACQUIRED FROM TRANSFERRIN BY K562 CELLS IS DELIVERED INTO A CYTOPLASMIC POOL OF CHELATABLE IRON(II) [J].
BREUER, W ;
EPSZTEJN, S ;
CABANTCHIK, ZI .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (41) :24209-24215