Multi-resource allocation in stochastic project scheduling

被引:20
作者
Wiesemann, Wolfram [1 ]
Kuhn, Daniel [1 ]
Rustem, Berc [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2RH, England
基金
英国工程与自然科学研究理事会;
关键词
Resource allocation problem; Project scheduling; Value-at-risk; PROGRAMS; OPTIMIZATION;
D O I
10.1007/s10479-008-0486-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a resource allocation model for project scheduling. Our model accommodates multiple resources and decision-dependent activity durations inspired by microeconomic theory. First, we elaborate a deterministic problem formulation. In a second stage, we enhance this model to account for uncertain problem parameters. Assuming that the first and second moments of these parameters are known, the stochastic model minimises an approximation of the value-at-risk of the project makespan. As a salient feature, our approach employs a scenario-free formulation which is based on normal approximations of the activity path durations. We extend our model to situations in which the moments of the random parameters are ambiguous and describe an iterative solution procedure. Extensive numerical results are provided.
引用
收藏
页码:193 / 220
页数:28
相关论文
共 38 条
[1]   Second-order cone programming [J].
Alizadeh, F ;
Goldfarb, D .
MATHEMATICAL PROGRAMMING, 2003, 95 (01) :3-51
[2]   Coherent measures of risk [J].
Artzner, P ;
Delbaen, F ;
Eber, JM ;
Heath, D .
MATHEMATICAL FINANCE, 1999, 9 (03) :203-228
[3]  
Bazaraa M. S., 2006, NONLINEAR PROGRAMMIN
[4]   Robust convex optimization [J].
Ben-Tal, A ;
Nemirovski, A .
MATHEMATICS OF OPERATIONS RESEARCH, 1998, 23 (04) :769-805
[5]   CENTRAL LIMIT THEOREM FOR META-DEPENDENT RANDOM-VARIABLES WITH UNBOUNDED META [J].
BERK, KN .
ANNALS OF PROBABILITY, 1973, 1 (02) :352-354
[6]  
Bertsimas D., 2007, MATH PROGRAM, V107, P5
[7]   Uncertain convex programs: randomized solutions and confidence levels [J].
Calafiore, G ;
Campi, MC .
MATHEMATICAL PROGRAMMING, 2005, 102 (01) :25-46
[8]   The scenario approach to robust control design [J].
Calafiore, Giuseppe C. ;
Campi, Marco C. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (05) :742-753
[9]   A robust optmization perspective on stochastic programming [J].
Chen, Xin ;
Sim, Melvyn ;
Sun, Peng .
OPERATIONS RESEARCH, 2007, 55 (06) :1058-1071
[10]   The stochastic time-cost tradeoff problem: A robust optimization approach [J].
Cohen, Izack ;
Golany, Boaz ;
Shtub, Avraham .
NETWORKS, 2007, 49 (02) :175-188