Robust flow measurement with multi-exposure speckle imaging

被引:280
作者
Parthasarathy, Ashwin B. [1 ]
Tom, W. James [1 ]
Gopal, Ashwini [1 ]
Zhang, Xiaojing [1 ]
Dunn, Andrew K. [1 ]
机构
[1] Univ Texas Austin, Dept Biomed Engn, Austin, TX 78712 USA
关键词
D O I
10.1364/OE.16.001975
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Laser Speckle Contrast Imaging (LSCI) is a minimally invasive full field optical technique used to generate blood flow maps with high spatial and temporal resolution. The lack of quantitative accuracy and the inability to predict flows in the presence of static scatterers such as an intact or thinned skull have been the primary limitation of LSCI. We present a new Multi-Exposure Speckle Imaging (MESI) instrument that has potential to obtain quantitative baseline flow measures. We show that the MESI instrument extends the range over which relative flow measurements are linear. We also present a new speckle model which can discriminate flows in the presence of static scatters. We show that in the presence of static scatterers the new model used along with the new MESI instrument can predict correlation times of flow consistently to within 10% of the value without static scatterers compared to an average deviation of more than 100% from the value without static scatterers using traditional LSCI. We also show that the new speckle model used with the MESI instrument can maintain the linearity of relative flow measurements in the presence of static scatterers. (C) 2008 Optical Society of America.
引用
收藏
页码:1975 / 1989
页数:15
相关论文
共 29 条
[1]  
Anderson J, 1993, SCIENCE, V261, P895
[2]   Mouse model of microembolic stroke and reperfusion [J].
Atochin, DN ;
Murciano, JC ;
Gürsoy-Özdemir, Y ;
Krasik, T ;
Noda, F ;
Ayata, C ;
Dunn, AK ;
Moskowitz, MA ;
Huang, PL ;
Muzykantov, VR .
STROKE, 2004, 35 (09) :2177-2182
[3]   Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex [J].
Ayata, C ;
Dunn, AK ;
Gursoy-Özdemir, Y ;
Huang, ZH ;
Boas, DA ;
Moskowitz, MA .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2004, 24 (07) :744-755
[4]   Speckle-visibility spectroscopy: A tool to study time-varying dynamics [J].
Bandyopadhyay, R ;
Gittings, AS ;
Suh, SS ;
Dixon, PK ;
Durian, DJ .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (09)
[5]  
Beme B. J., 2000, DYNAMIC LIGHT SCATTE
[6]   Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation [J].
Boas, DA ;
Yodh, AG .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (01) :192-215
[7]   MODEL FOR LASER DOPPLER MEASUREMENTS OF BLOOD-FLOW IN TISSUE [J].
BONNER, R ;
NOSSAL, R .
APPLIED OPTICS, 1981, 20 (12) :2097-2107
[8]   Modified laser speckle imaging method with improved spatial resolution [J].
Cheng, HY ;
Luo, QM ;
Zeng, SQ ;
Chen, SB ;
Cen, J ;
Gong, H .
JOURNAL OF BIOMEDICAL OPTICS, 2003, 8 (03) :559-564
[9]   Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model [J].
Choi, B ;
Kang, NM ;
Nelson, JS .
MICROVASCULAR RESEARCH, 2004, 68 (02) :143-146
[10]   Speckle visibility spectroscopy and variable granular fluidization [J].
Dixon, PK ;
Durian, DJ .
PHYSICAL REVIEW LETTERS, 2003, 90 (18) :4