Subsystem identification through dimensionality reduction of large-scale gene expression data

被引:169
作者
Kim, PM
Tidor, B
机构
[1] MIT, Biol Engn Div, Cambridge, MA 02139 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
D O I
10.1101/gr.903503
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The availability of parallel, high-throughput biological experiments that simultaneously monitor thousands of cellular observables provides an opportunity for investigating cellular behavior in a highly quantitative manner at multiple levels of resolution. One challenge to more fully exploit new experimental advances is the need to develop algorithms to provide an analysis at each of the relevant levels of detail. Here, the data analysis method non-negative matrix factorization (NMF) has been applied to the analysis of gene array experiments. Whereas current algorithms identify relationships on the basis of large-scale similarity between expression patterns, NMF is a recently developed machine learning technique capable of recognizing similarity between subportions of the data corresponding to localized features in expression space. A large data set consisting of 300 genome-wide expression measurements of yeast was used as sample data to illustrate the performance of the new approach. Local features detected are shown to map well to functional cellular subsystems. Functional relationships predicted by the new analysis are compared with those predicted using standard approaches; validation using bioinformatic databases suggests predictions using the new approach may be up to twice as accurate as some conventional approaches.
引用
收藏
页码:1706 / 1718
页数:13
相关论文
共 41 条
[1]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[2]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[3]   Molecular classification of cutaneous malignant melanoma by gene expression profiling [J].
Bittner, M ;
Meitzer, P ;
Chen, Y ;
Jiang, Y ;
Seftor, E ;
Hendrix, M ;
Radmacher, M ;
Simon, R ;
Yakhini, Z ;
Ben-Dor, A ;
Sampas, N ;
Dougherty, E ;
Wang, E ;
Marincola, F ;
Gooden, C ;
Lueders, J ;
Glatfelter, A ;
Pollock, P ;
Carpten, J ;
Gillanders, E ;
Leja, D ;
Dietrich, K ;
Beaudry, C ;
Berens, M ;
Alberts, D ;
Sondak, V ;
Hayward, N ;
Trent, J .
NATURE, 2000, 406 (6795) :536-540
[4]   Bayesian hierarchical model for identifying changes in gene expression from microarray experiments [J].
Broët, P ;
Richardson, S ;
Radvanyi, F .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (04) :671-683
[5]   Image metrics in the statistical analysis of DNA microarray data [J].
Brown, CS ;
Goodwin, PC ;
Sorger, PK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) :8944-8949
[6]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[7]   A genome-wide transcriptional analysis of the mitotic cell cycle [J].
Cho, RJ ;
Campbell, MJ ;
Winzeler, EA ;
Steinmetz, L ;
Conway, A ;
Wodicka, L ;
Wolfsberg, TG ;
Gabrielian, AE ;
Landsman, D ;
Lockhart, DJ ;
Davis, RW .
MOLECULAR CELL, 1998, 2 (01) :65-73
[8]   The transcriptional program of sporulation in budding yeast [J].
Chu, S ;
DeRisi, J ;
Eisen, M ;
Mulholland, J ;
Botstein, D ;
Brown, PO ;
Herskowitz, I .
SCIENCE, 1998, 282 (5389) :699-705
[9]   Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion [J].
Coller, HA ;
Grandori, C ;
Tamayo, P ;
Colbert, T ;
Lander, ES ;
Eisenman, RN ;
Golub, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3260-3265
[10]   YPD™, PombePD™ and WormPD™:: model organism volumes of the BioKnowledge™ Library, an integrated resource for protein information [J].
Costanzo, MC ;
Crawford, ME ;
Hirschman, JE ;
Kranz, JE ;
Olsen, P ;
Robertson, LS ;
Skrzypek, MS ;
Braun, BR ;
Hopkins, KL ;
Kondu, P ;
Lengieza, C ;
Lew-Smith, JE ;
Tillberg, M ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :75-79