Asymptotics for stationary very nearly unit root processes

被引:14
作者
Andrews, Donald W. K.
Guggenberger, Patrik [1 ]
机构
[1] Univ Calif Los Angeles, Dept Econ, Los Angeles, CA 90024 USA
[2] Yale Univ, Cowles Fdn, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
asymptotic distribution; autoregressive model; stationary very nearly unit root process;
D O I
10.1111/j.1467-9892.2007.00552.x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article considers a mean zero stationary first-order autoregressive (AR) model. It is shown that the least squares estimator and t statistic have Cauchy and standard normal asymptotic distributions, respectively, when the AR parameter rho(n) is very near to one in the sense that 1 - rho(n) = o(n(-1)).
引用
收藏
页码:203 / 212
页数:10
相关论文
共 16 条
[1]  
ANDREWS DWK, 2007, 1606 YAL U COWL FDN
[2]  
Bobkowski M.J., 1983, THESIS U WISCONSIN M
[3]  
Brockwell P.J., 1991, Time Series: Theory and Methods
[4]  
CAVANAGH C, 1985, THESIS HARVARD U
[5]   ASYMPTOTIC INFERENCE FOR NEARLY NONSTATIONARY AR(1) PROCESSES [J].
CHAN, NH ;
WEI, CZ .
ANNALS OF STATISTICS, 1987, 15 (03) :1050-1063
[6]   Efficient tests for a unit root when the initial observation is drawn from its unconditional distribution [J].
Elliott, G .
INTERNATIONAL ECONOMIC REVIEW, 1999, 40 (03) :767-783
[7]   Confidence intervals for autoregressive coefficients near one [J].
Elliott, G ;
Stock, JH .
JOURNAL OF ECONOMETRICS, 2001, 103 (1-2) :155-181
[8]   Uniform limit theory for stationary autoregression [J].
Giraitis, L ;
Phillips, PCB .
JOURNAL OF TIME SERIES ANALYSIS, 2006, 27 (01) :51-60
[9]  
HALL P, 1980, MARTINGALE LIMIT THE
[10]   Tests for unit roots and the initial condition [J].
Müller, UK ;
Elliott, G .
ECONOMETRICA, 2003, 71 (04) :1269-1286