Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators

被引:111
作者
Lounici, Karim [1 ,2 ]
机构
[1] Univ Paris 07, Lab Probabilites & Modeles Aleatoires, UMR CNRS 7599, F-75251 Paris 05, France
[2] CREST, Stat Lab, F-92240 Malakoff, France
关键词
Linear model; Lasso; Dantzig; Sparsity; Model selection; Sign consistency;
D O I
10.1214/08-EJS177
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive the l(infinity) convergence rate simultaneously for Lasso and Dantzig estimators in a high-dimensional linear regression model under a mutual coherence assumption on the Gram matrix of the design and two different assumptions on the noise: Gaussian noise and general noise with finite variance. Then we prove that simultaneously the thresholded Lasso and Dantzig estimators with a proper choice of the threshold enjoy a sign concentration property provided that the non-zero components of the target vector are not too small.
引用
收藏
页码:90 / 102
页数:13
相关论文
共 23 条
[1]  
BICKEL PJ, 2007, ANN STAT
[2]  
BUNEA F, 2007, IMS LECT NOTES MONOG
[3]   Sparsity oracle inequalities for the Lasso [J].
Bunea, Florentina ;
Tsybakov, Alexandre ;
Wegkamp, Marten .
ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 :169-194
[4]   Aggregation for gaussian regression [J].
Bunea, Florentina ;
Tsybakov, Alexandre B. ;
Wegkamp, Marten H. .
ANNALS OF STATISTICS, 2007, 35 (04) :1674-1697
[5]  
CANDES E, 2007, ANN STAT IN PRESS
[6]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[7]   Stable recovery of sparse overcomplete representations in the presence of noise [J].
Donoho, DL ;
Elad, M ;
Temlyakov, VN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (01) :6-18
[8]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[9]  
Emery M, 2000, LECT NOTES MATH, V1738, P5
[10]   Persistence in high-dimensional linear predictor selection and the virtue of overparametrization [J].
Greenshtein, E ;
Ritov, Y .
BERNOULLI, 2004, 10 (06) :971-988